Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation

A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2012-09, Vol.61 (9), p.2413-2421
Hauptverfasser: Marino, C. S., Chau, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2421
container_issue 9
container_start_page 2413
container_title IEEE transactions on instrumentation and measurement
container_volume 61
creator Marino, C. S.
Chau, P. M.
description A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.
doi_str_mv 10.1109/TIM.2012.2190549
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6177662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6177662</ieee_id><sourcerecordid>2735997901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</originalsourceid><addsrcrecordid>eNpd0TtPwzAUBWALgUQp7EgskVhYUvyKHY8VtFCpCInXGjnJTXCVxsVOCgz8dxyKGJjulfXdM_ggdErwhBCsLp8WdxOKCZ1QonDC1R4akSSRsRKC7qMRxiSNFU_EITryfoUxloLLEfpa2vd4CVtookfT9t6aUg9r3YZxDR0UnbFtNHd2Heno1tSv8QN42_Q_zy_Gdf3gN8G5sCzWuobo2Zu2jqZ9Zx3UDrw3W4heArEumn0EuLGNHgKO0UGlGw8nv3OMnuezp6vbeHl_s7iaLuOCUd7FZamp1FrkScJykQpJylyWgKXEUHHJcxBpqjQXRJACClloXtGEVYBzrHgl2Rhd7HI3zr714LtsbXwBTaNbsL3PCBMJ4VQoHOj5P7qyvQu_ERRmjKWKhugxwjtVOOu9gyrbOLPW7jOgbOgjC31kQx_Zbx_h5Gx3YgDgjwsiZWiIfQNXS4f4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033389225</pqid></control><display><type>article</type><title>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</title><source>IEEE Electronic Library (IEL)</source><creator>Marino, C. S. ; Chau, P. M.</creator><creatorcontrib>Marino, C. S. ; Chau, P. M.</creatorcontrib><description>A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2190549</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D autoregressive (AR) modeling ; Algorithms ; Area measurement ; Computer simulation ; Data models ; Extrapolation ; Fourier transforms ; High resolution ; linear vector prediction ; Mathematical analysis ; Mathematical models ; Measurement uncertainty ; Prediction algorithms ; Size measurement ; Spectra ; spectral estimation ; Studies ; vector extrapolation ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on instrumentation and measurement, 2012-09, Vol.61 (9), p.2413-2421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</citedby><cites>FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6177662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6177662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marino, C. S.</creatorcontrib><creatorcontrib>Chau, P. M.</creatorcontrib><title>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.</description><subject>2-D autoregressive (AR) modeling</subject><subject>Algorithms</subject><subject>Area measurement</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Extrapolation</subject><subject>Fourier transforms</subject><subject>High resolution</subject><subject>linear vector prediction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>Prediction algorithms</subject><subject>Size measurement</subject><subject>Spectra</subject><subject>spectral estimation</subject><subject>Studies</subject><subject>vector extrapolation</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0TtPwzAUBWALgUQp7EgskVhYUvyKHY8VtFCpCInXGjnJTXCVxsVOCgz8dxyKGJjulfXdM_ggdErwhBCsLp8WdxOKCZ1QonDC1R4akSSRsRKC7qMRxiSNFU_EITryfoUxloLLEfpa2vd4CVtookfT9t6aUg9r3YZxDR0UnbFtNHd2Heno1tSv8QN42_Q_zy_Gdf3gN8G5sCzWuobo2Zu2jqZ9Zx3UDrw3W4heArEumn0EuLGNHgKO0UGlGw8nv3OMnuezp6vbeHl_s7iaLuOCUd7FZamp1FrkScJykQpJylyWgKXEUHHJcxBpqjQXRJACClloXtGEVYBzrHgl2Rhd7HI3zr714LtsbXwBTaNbsL3PCBMJ4VQoHOj5P7qyvQu_ERRmjKWKhugxwjtVOOu9gyrbOLPW7jOgbOgjC31kQx_Zbx_h5Gx3YgDgjwsiZWiIfQNXS4f4</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Marino, C. S.</creator><creator>Chau, P. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</title><author>Marino, C. S. ; Chau, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>2-D autoregressive (AR) modeling</topic><topic>Algorithms</topic><topic>Area measurement</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Extrapolation</topic><topic>Fourier transforms</topic><topic>High resolution</topic><topic>linear vector prediction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>Prediction algorithms</topic><topic>Size measurement</topic><topic>Spectra</topic><topic>spectral estimation</topic><topic>Studies</topic><topic>vector extrapolation</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marino, C. S.</creatorcontrib><creatorcontrib>Chau, P. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marino, C. S.</au><au>Chau, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>61</volume><issue>9</issue><spage>2413</spage><epage>2421</epage><pages>2413-2421</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2012.2190549</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2012-09, Vol.61 (9), p.2413-2421
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_6177662
source IEEE Electronic Library (IEL)
subjects 2-D autoregressive (AR) modeling
Algorithms
Area measurement
Computer simulation
Data models
Extrapolation
Fourier transforms
High resolution
linear vector prediction
Mathematical analysis
Mathematical models
Measurement uncertainty
Prediction algorithms
Size measurement
Spectra
spectral estimation
Studies
vector extrapolation
Vectors
Vectors (mathematics)
title Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Level%20Sinusoidal%20Signal%20Detection%20From%20a%20High-Resolution%20Virtual%20Spectral%20Image%20Using%20Autoregressive%20Vector%20Extrapolation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Marino,%20C.%20S.&rft.date=2012-09-01&rft.volume=61&rft.issue=9&rft.spage=2413&rft.epage=2421&rft.pages=2413-2421&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2190549&rft_dat=%3Cproquest_RIE%3E2735997901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033389225&rft_id=info:pmid/&rft_ieee_id=6177662&rfr_iscdi=true