Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation
A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation alg...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2012-09, Vol.61 (9), p.2413-2421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2421 |
---|---|
container_issue | 9 |
container_start_page | 2413 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 61 |
creator | Marino, C. S. Chau, P. M. |
description | A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example. |
doi_str_mv | 10.1109/TIM.2012.2190549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6177662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6177662</ieee_id><sourcerecordid>2735997901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</originalsourceid><addsrcrecordid>eNpd0TtPwzAUBWALgUQp7EgskVhYUvyKHY8VtFCpCInXGjnJTXCVxsVOCgz8dxyKGJjulfXdM_ggdErwhBCsLp8WdxOKCZ1QonDC1R4akSSRsRKC7qMRxiSNFU_EITryfoUxloLLEfpa2vd4CVtookfT9t6aUg9r3YZxDR0UnbFtNHd2Heno1tSv8QN42_Q_zy_Gdf3gN8G5sCzWuobo2Zu2jqZ9Zx3UDrw3W4heArEumn0EuLGNHgKO0UGlGw8nv3OMnuezp6vbeHl_s7iaLuOCUd7FZamp1FrkScJykQpJylyWgKXEUHHJcxBpqjQXRJACClloXtGEVYBzrHgl2Rhd7HI3zr714LtsbXwBTaNbsL3PCBMJ4VQoHOj5P7qyvQu_ERRmjKWKhugxwjtVOOu9gyrbOLPW7jOgbOgjC31kQx_Zbx_h5Gx3YgDgjwsiZWiIfQNXS4f4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033389225</pqid></control><display><type>article</type><title>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</title><source>IEEE Electronic Library (IEL)</source><creator>Marino, C. S. ; Chau, P. M.</creator><creatorcontrib>Marino, C. S. ; Chau, P. M.</creatorcontrib><description>A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2190549</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D autoregressive (AR) modeling ; Algorithms ; Area measurement ; Computer simulation ; Data models ; Extrapolation ; Fourier transforms ; High resolution ; linear vector prediction ; Mathematical analysis ; Mathematical models ; Measurement uncertainty ; Prediction algorithms ; Size measurement ; Spectra ; spectral estimation ; Studies ; vector extrapolation ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on instrumentation and measurement, 2012-09, Vol.61 (9), p.2413-2421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</citedby><cites>FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6177662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6177662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marino, C. S.</creatorcontrib><creatorcontrib>Chau, P. M.</creatorcontrib><title>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.</description><subject>2-D autoregressive (AR) modeling</subject><subject>Algorithms</subject><subject>Area measurement</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Extrapolation</subject><subject>Fourier transforms</subject><subject>High resolution</subject><subject>linear vector prediction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>Prediction algorithms</subject><subject>Size measurement</subject><subject>Spectra</subject><subject>spectral estimation</subject><subject>Studies</subject><subject>vector extrapolation</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0TtPwzAUBWALgUQp7EgskVhYUvyKHY8VtFCpCInXGjnJTXCVxsVOCgz8dxyKGJjulfXdM_ggdErwhBCsLp8WdxOKCZ1QonDC1R4akSSRsRKC7qMRxiSNFU_EITryfoUxloLLEfpa2vd4CVtookfT9t6aUg9r3YZxDR0UnbFtNHd2Heno1tSv8QN42_Q_zy_Gdf3gN8G5sCzWuobo2Zu2jqZ9Zx3UDrw3W4heArEumn0EuLGNHgKO0UGlGw8nv3OMnuezp6vbeHl_s7iaLuOCUd7FZamp1FrkScJykQpJylyWgKXEUHHJcxBpqjQXRJACClloXtGEVYBzrHgl2Rhd7HI3zr714LtsbXwBTaNbsL3PCBMJ4VQoHOj5P7qyvQu_ERRmjKWKhugxwjtVOOu9gyrbOLPW7jOgbOgjC31kQx_Zbx_h5Gx3YgDgjwsiZWiIfQNXS4f4</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Marino, C. S.</creator><creator>Chau, P. M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120901</creationdate><title>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</title><author>Marino, C. S. ; Chau, P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-dda27aa6b553b68671db7de0770ef474be6889a46161cec7ca4f253fe0b094f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>2-D autoregressive (AR) modeling</topic><topic>Algorithms</topic><topic>Area measurement</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Extrapolation</topic><topic>Fourier transforms</topic><topic>High resolution</topic><topic>linear vector prediction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>Prediction algorithms</topic><topic>Size measurement</topic><topic>Spectra</topic><topic>spectral estimation</topic><topic>Studies</topic><topic>vector extrapolation</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marino, C. S.</creatorcontrib><creatorcontrib>Chau, P. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marino, C. S.</au><au>Chau, P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>61</volume><issue>9</issue><spage>2413</spage><epage>2421</epage><pages>2413-2421</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>A new high-resolution virtual spectral imaging technique is able to resolve a closely spaced dominant and low-level sinusoidal signal (power spread of up to 15 dB) in harsh signal-to-noise ratio environments with limited samples where a high-resolution 2-D autoregressive (AR) spectral estimation algorithm failed. This feat is accomplished by applying a 2-D fast Fourier transform to an expanded 2-D measurement data set (which consists of the original measurements extended by vector-extrapolated virtual measurements). The virtual measurement data are created from the original 2-D measurements using an innovative virtual-data vector extrapolation algorithm. A special 2-D AR model is used to model the measurements and then used to extrapolate measurements a vector at a time. Simulations compare our virtual spectral image with a high-resolution 2-D AR spectral image and a spectral image of the truth (the measurements that the extrapolation algorithm is trying to predict). The virtual measurement data are also compared with the true measurement data. We analytically show that the virtual measurements are a function of the true measurements plus some residual error terms. Mean-squared-error simulations show that the extrapolated measurements are well behaved for our problem space and provide a cost example.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2012.2190549</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2012-09, Vol.61 (9), p.2413-2421 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_6177662 |
source | IEEE Electronic Library (IEL) |
subjects | 2-D autoregressive (AR) modeling Algorithms Area measurement Computer simulation Data models Extrapolation Fourier transforms High resolution linear vector prediction Mathematical analysis Mathematical models Measurement uncertainty Prediction algorithms Size measurement Spectra spectral estimation Studies vector extrapolation Vectors Vectors (mathematics) |
title | Low-Level Sinusoidal Signal Detection From a High-Resolution Virtual Spectral Image Using Autoregressive Vector Extrapolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Level%20Sinusoidal%20Signal%20Detection%20From%20a%20High-Resolution%20Virtual%20Spectral%20Image%20Using%20Autoregressive%20Vector%20Extrapolation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Marino,%20C.%20S.&rft.date=2012-09-01&rft.volume=61&rft.issue=9&rft.spage=2413&rft.epage=2421&rft.pages=2413-2421&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2190549&rft_dat=%3Cproquest_RIE%3E2735997901%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033389225&rft_id=info:pmid/&rft_ieee_id=6177662&rfr_iscdi=true |