A 0.55V 61dB-SNR 67dB-SFDR 7MHz 4th-order Butterworth filter using ring-oscillator-based integrators in 90nm CMOS

Integrators are key building blocks in many analog signal processing circuits and systems. They are typically implemented using either an opamp-RC or a G m -C architecture depending on bandwidth and linearity requirements. The performance of both these topologies depends on the operational transcond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Drost, B., Talegaonkar, Mrunmay, Hanumolu, Pavan Kumar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue
container_start_page 360
container_title
container_volume
creator Drost, B.
Talegaonkar, Mrunmay
Hanumolu, Pavan Kumar
description Integrators are key building blocks in many analog signal processing circuits and systems. They are typically implemented using either an opamp-RC or a G m -C architecture depending on bandwidth and linearity requirements. The performance of both these topologies depends on the operational transconductance amplifier (OTA) used to implement the integrator. Reduced supply voltage and lower transistor output impedance make it difficult to implement high-gain wide-bandwidth OTAs in a power-efficient manner. Consequently, the DC gain of the integrator is often severely limited when designed in deep-submicron CMOS processes. Conventional integrators employ multi-stage OTAs operating in weak inversion and forward body biasing to achieve large DC gain at low supply voltages [1]. These techniques require automatic biasing to guarantee robust operation under all conditions and the use of frequency compensation combined with large dimensions needed to bias the transistors in weak inversion severely limits the bandwidth and increases power dissipation. In this paper, we propose a ring-oscillator-based integrator (ROI) that seeks to overcome the limitations of conventional OTA-based integrators.
doi_str_mv 10.1109/ISSCC.2012.6177051
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6177051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6177051</ieee_id><sourcerecordid>6177051</sourcerecordid><originalsourceid>FETCH-ieee_primary_61770513</originalsourceid><addsrcrecordid>eNp9j8tOwzAURM1LIoX-AGzuDzhcx_F1vKSBqiwKUoPYVoG4rVGagO0KwdeTSmXLZuZozmoYuxKYCoHm5qGqyjLNUGQpCa1RiSM2NroQOWmJUuv8mCWZ1MQLQjphoz9B8pQlKIzkpCSes1EI74ioDBUJ-7wFTJV6ARLNhFePCyC9h-ndAvR89gN53PDeN9bDZBej9V-9jxtYuXZg2AXXrcEPwfvw5tq2jr3nr3WwDbgu2rXfD2FgMNhtoZw_VZfsbFW3wY4PfcGup_fP5Yw7a-3yw7tt7b-Xh4vyf_sLgcNM7A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 0.55V 61dB-SNR 67dB-SFDR 7MHz 4th-order Butterworth filter using ring-oscillator-based integrators in 90nm CMOS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Drost, B. ; Talegaonkar, Mrunmay ; Hanumolu, Pavan Kumar</creator><creatorcontrib>Drost, B. ; Talegaonkar, Mrunmay ; Hanumolu, Pavan Kumar</creatorcontrib><description>Integrators are key building blocks in many analog signal processing circuits and systems. They are typically implemented using either an opamp-RC or a G m -C architecture depending on bandwidth and linearity requirements. The performance of both these topologies depends on the operational transconductance amplifier (OTA) used to implement the integrator. Reduced supply voltage and lower transistor output impedance make it difficult to implement high-gain wide-bandwidth OTAs in a power-efficient manner. Consequently, the DC gain of the integrator is often severely limited when designed in deep-submicron CMOS processes. Conventional integrators employ multi-stage OTAs operating in weak inversion and forward body biasing to achieve large DC gain at low supply voltages [1]. These techniques require automatic biasing to guarantee robust operation under all conditions and the use of frequency compensation combined with large dimensions needed to bias the transistors in weak inversion severely limits the bandwidth and increases power dissipation. In this paper, we propose a ring-oscillator-based integrator (ROI) that seeks to overcome the limitations of conventional OTA-based integrators.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 1467303763</identifier><identifier>ISBN: 9781467303767</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781467303774</identifier><identifier>EISBN: 1467303771</identifier><identifier>EISBN: 9781467303743</identifier><identifier>EISBN: 1467303747</identifier><identifier>EISBN: 9781467303750</identifier><identifier>EISBN: 1467303755</identifier><identifier>DOI: 10.1109/ISSCC.2012.6177051</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Charge pumps ; Current measurement ; Linearity ; Low pass filters ; Pulse width modulation ; Tuning</subject><ispartof>2012 IEEE International Solid-State Circuits Conference, 2012, p.360-362</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6177051$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6177051$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Drost, B.</creatorcontrib><creatorcontrib>Talegaonkar, Mrunmay</creatorcontrib><creatorcontrib>Hanumolu, Pavan Kumar</creatorcontrib><title>A 0.55V 61dB-SNR 67dB-SFDR 7MHz 4th-order Butterworth filter using ring-oscillator-based integrators in 90nm CMOS</title><title>2012 IEEE International Solid-State Circuits Conference</title><addtitle>ISSCC</addtitle><description>Integrators are key building blocks in many analog signal processing circuits and systems. They are typically implemented using either an opamp-RC or a G m -C architecture depending on bandwidth and linearity requirements. The performance of both these topologies depends on the operational transconductance amplifier (OTA) used to implement the integrator. Reduced supply voltage and lower transistor output impedance make it difficult to implement high-gain wide-bandwidth OTAs in a power-efficient manner. Consequently, the DC gain of the integrator is often severely limited when designed in deep-submicron CMOS processes. Conventional integrators employ multi-stage OTAs operating in weak inversion and forward body biasing to achieve large DC gain at low supply voltages [1]. These techniques require automatic biasing to guarantee robust operation under all conditions and the use of frequency compensation combined with large dimensions needed to bias the transistors in weak inversion severely limits the bandwidth and increases power dissipation. In this paper, we propose a ring-oscillator-based integrator (ROI) that seeks to overcome the limitations of conventional OTA-based integrators.</description><subject>Bandwidth</subject><subject>Charge pumps</subject><subject>Current measurement</subject><subject>Linearity</subject><subject>Low pass filters</subject><subject>Pulse width modulation</subject><subject>Tuning</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>1467303763</isbn><isbn>9781467303767</isbn><isbn>9781467303774</isbn><isbn>1467303771</isbn><isbn>9781467303743</isbn><isbn>1467303747</isbn><isbn>9781467303750</isbn><isbn>1467303755</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j8tOwzAURM1LIoX-AGzuDzhcx_F1vKSBqiwKUoPYVoG4rVGagO0KwdeTSmXLZuZozmoYuxKYCoHm5qGqyjLNUGQpCa1RiSM2NroQOWmJUuv8mCWZ1MQLQjphoz9B8pQlKIzkpCSes1EI74ioDBUJ-7wFTJV6ARLNhFePCyC9h-ndAvR89gN53PDeN9bDZBej9V-9jxtYuXZg2AXXrcEPwfvw5tq2jr3nr3WwDbgu2rXfD2FgMNhtoZw_VZfsbFW3wY4PfcGup_fP5Yw7a-3yw7tt7b-Xh4vyf_sLgcNM7A</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Drost, B.</creator><creator>Talegaonkar, Mrunmay</creator><creator>Hanumolu, Pavan Kumar</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201202</creationdate><title>A 0.55V 61dB-SNR 67dB-SFDR 7MHz 4th-order Butterworth filter using ring-oscillator-based integrators in 90nm CMOS</title><author>Drost, B. ; Talegaonkar, Mrunmay ; Hanumolu, Pavan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_61770513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bandwidth</topic><topic>Charge pumps</topic><topic>Current measurement</topic><topic>Linearity</topic><topic>Low pass filters</topic><topic>Pulse width modulation</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Drost, B.</creatorcontrib><creatorcontrib>Talegaonkar, Mrunmay</creatorcontrib><creatorcontrib>Hanumolu, Pavan Kumar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Drost, B.</au><au>Talegaonkar, Mrunmay</au><au>Hanumolu, Pavan Kumar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 0.55V 61dB-SNR 67dB-SFDR 7MHz 4th-order Butterworth filter using ring-oscillator-based integrators in 90nm CMOS</atitle><btitle>2012 IEEE International Solid-State Circuits Conference</btitle><stitle>ISSCC</stitle><date>2012-02</date><risdate>2012</risdate><spage>360</spage><epage>362</epage><pages>360-362</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>1467303763</isbn><isbn>9781467303767</isbn><eisbn>9781467303774</eisbn><eisbn>1467303771</eisbn><eisbn>9781467303743</eisbn><eisbn>1467303747</eisbn><eisbn>9781467303750</eisbn><eisbn>1467303755</eisbn><abstract>Integrators are key building blocks in many analog signal processing circuits and systems. They are typically implemented using either an opamp-RC or a G m -C architecture depending on bandwidth and linearity requirements. The performance of both these topologies depends on the operational transconductance amplifier (OTA) used to implement the integrator. Reduced supply voltage and lower transistor output impedance make it difficult to implement high-gain wide-bandwidth OTAs in a power-efficient manner. Consequently, the DC gain of the integrator is often severely limited when designed in deep-submicron CMOS processes. Conventional integrators employ multi-stage OTAs operating in weak inversion and forward body biasing to achieve large DC gain at low supply voltages [1]. These techniques require automatic biasing to guarantee robust operation under all conditions and the use of frequency compensation combined with large dimensions needed to bias the transistors in weak inversion severely limits the bandwidth and increases power dissipation. In this paper, we propose a ring-oscillator-based integrator (ROI) that seeks to overcome the limitations of conventional OTA-based integrators.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2012.6177051</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0193-6530
ispartof 2012 IEEE International Solid-State Circuits Conference, 2012, p.360-362
issn 0193-6530
2376-8606
language eng
recordid cdi_ieee_primary_6177051
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bandwidth
Charge pumps
Current measurement
Linearity
Low pass filters
Pulse width modulation
Tuning
title A 0.55V 61dB-SNR 67dB-SFDR 7MHz 4th-order Butterworth filter using ring-oscillator-based integrators in 90nm CMOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%200.55V%2061dB-SNR%2067dB-SFDR%207MHz%204th-order%20Butterworth%20filter%20using%20ring-oscillator-based%20integrators%20in%2090nm%20CMOS&rft.btitle=2012%20IEEE%20International%20Solid-State%20Circuits%20Conference&rft.au=Drost,%20B.&rft.date=2012-02&rft.spage=360&rft.epage=362&rft.pages=360-362&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=1467303763&rft.isbn_list=9781467303767&rft_id=info:doi/10.1109/ISSCC.2012.6177051&rft_dat=%3Cieee_6IE%3E6177051%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303774&rft.eisbn_list=1467303771&rft.eisbn_list=9781467303743&rft.eisbn_list=1467303747&rft.eisbn_list=9781467303750&rft.eisbn_list=1467303755&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6177051&rfr_iscdi=true