CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection
Silicon devices based on impedance measurements offer label-free and direct electrical detection when used to quantify the hybridization of DNA molecules. They show rapid, robust, and inexpensive measurement and compatibility with commercial microfabrication technology. The real-time measurement of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | |
container_volume | |
creator | Kang-Ho Lee Sukhwan Choi Jeong Oen Lee Jun-Bo Yoon Gyu-Hyeong Cho |
description | Silicon devices based on impedance measurements offer label-free and direct electrical detection when used to quantify the hybridization of DNA molecules. They show rapid, robust, and inexpensive measurement and compatibility with commercial microfabrication technology. The real-time measurement of the impedance does not require the use of labeling molecules attached to the target DNA in optical and magnetic technology [1,2]. It also has the advantage of miniaturization for point-of-care (PoC) or on-site sensing applications, unlike the 3-electrode topology in electrochemical sensors [3]. Several studies have proposed capacitive biosensors that utilize a nonfaradaic process, which refers to transient currents charging a geometrical capacitor in an electrolyte-electrode interface [4]. Conventional capacitive biosensors using the excitation of the bidirectional current [5,6] can be implemented with a compact design, but they have several issues that degrade the sensitivity of the sensor, such as DC drift in the electrode caused by a charge imbalance, the electrolysis generated by DC voltage across the electrodes, the offset generated by pre-charged initial values, and weakness against common-mode noise. As a solution, we report a fully integrated capacitance-based biosensor that locates two electrodes differentially in a single current source. |
doi_str_mv | 10.1109/ISSCC.2012.6176945 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6176945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6176945</ieee_id><sourcerecordid>6176945</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f4eaae25e8426e802bba295f3b8427efc6a366c62d039c1df4e6cef17612d4c3</originalsourceid><addsrcrecordid>eNo1kMtqwzAURNUX1EnzA-1GP2D3SrKvrGVwX4G0Kbj7IMtXRMW1g21a8vd1aLoamDkMzDB2KyARAsz9qiyLIpEgZIJCo0mzM7YwOhcpagVK6_ScRVJpjHMEvGCz_wDVJYtAGBVjpuCazYbhEwAyg3nE3ovXTcmd3VsXxvBNvArdQO3Q9fwnjDtO7c62jmp-NI9EGA_cT2ljK2pi3xPxh7clr2kkN4auvWFX3jYDLU46Z-XT40fxEq83z6tiuY6DgTH2KVlLMqM8lUg5yKqy0mReVZOhyTu0CtGhrEEZJ-qJR0d-2i1knTo1Z3d_rYGItvs-fNn-sD39on4B-QVTnw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kang-Ho Lee ; Sukhwan Choi ; Jeong Oen Lee ; Jun-Bo Yoon ; Gyu-Hyeong Cho</creator><creatorcontrib>Kang-Ho Lee ; Sukhwan Choi ; Jeong Oen Lee ; Jun-Bo Yoon ; Gyu-Hyeong Cho</creatorcontrib><description>Silicon devices based on impedance measurements offer label-free and direct electrical detection when used to quantify the hybridization of DNA molecules. They show rapid, robust, and inexpensive measurement and compatibility with commercial microfabrication technology. The real-time measurement of the impedance does not require the use of labeling molecules attached to the target DNA in optical and magnetic technology [1,2]. It also has the advantage of miniaturization for point-of-care (PoC) or on-site sensing applications, unlike the 3-electrode topology in electrochemical sensors [3]. Several studies have proposed capacitive biosensors that utilize a nonfaradaic process, which refers to transient currents charging a geometrical capacitor in an electrolyte-electrode interface [4]. Conventional capacitive biosensors using the excitation of the bidirectional current [5,6] can be implemented with a compact design, but they have several issues that degrade the sensitivity of the sensor, such as DC drift in the electrode caused by a charge imbalance, the electrolysis generated by DC voltage across the electrodes, the offset generated by pre-charged initial values, and weakness against common-mode noise. As a solution, we report a fully integrated capacitance-based biosensor that locates two electrodes differentially in a single current source.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 1467303763</identifier><identifier>ISBN: 9781467303767</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781467303774</identifier><identifier>EISBN: 1467303771</identifier><identifier>EISBN: 9781467303743</identifier><identifier>EISBN: 1467303755</identifier><identifier>EISBN: 1467303747</identifier><identifier>EISBN: 9781467303750</identifier><identifier>DOI: 10.1109/ISSCC.2012.6176945</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biosensors ; Capacitance ; CMOS integrated circuits ; DNA ; Electrodes ; Switches</subject><ispartof>2012 IEEE International Solid-State Circuits Conference, 2012, p.120-122</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6176945$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6176945$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang-Ho Lee</creatorcontrib><creatorcontrib>Sukhwan Choi</creatorcontrib><creatorcontrib>Jeong Oen Lee</creatorcontrib><creatorcontrib>Jun-Bo Yoon</creatorcontrib><creatorcontrib>Gyu-Hyeong Cho</creatorcontrib><title>CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection</title><title>2012 IEEE International Solid-State Circuits Conference</title><addtitle>ISSCC</addtitle><description>Silicon devices based on impedance measurements offer label-free and direct electrical detection when used to quantify the hybridization of DNA molecules. They show rapid, robust, and inexpensive measurement and compatibility with commercial microfabrication technology. The real-time measurement of the impedance does not require the use of labeling molecules attached to the target DNA in optical and magnetic technology [1,2]. It also has the advantage of miniaturization for point-of-care (PoC) or on-site sensing applications, unlike the 3-electrode topology in electrochemical sensors [3]. Several studies have proposed capacitive biosensors that utilize a nonfaradaic process, which refers to transient currents charging a geometrical capacitor in an electrolyte-electrode interface [4]. Conventional capacitive biosensors using the excitation of the bidirectional current [5,6] can be implemented with a compact design, but they have several issues that degrade the sensitivity of the sensor, such as DC drift in the electrode caused by a charge imbalance, the electrolysis generated by DC voltage across the electrodes, the offset generated by pre-charged initial values, and weakness against common-mode noise. As a solution, we report a fully integrated capacitance-based biosensor that locates two electrodes differentially in a single current source.</description><subject>Biosensors</subject><subject>Capacitance</subject><subject>CMOS integrated circuits</subject><subject>DNA</subject><subject>Electrodes</subject><subject>Switches</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>1467303763</isbn><isbn>9781467303767</isbn><isbn>9781467303774</isbn><isbn>1467303771</isbn><isbn>9781467303743</isbn><isbn>1467303755</isbn><isbn>1467303747</isbn><isbn>9781467303750</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtqwzAURNUX1EnzA-1GP2D3SrKvrGVwX4G0Kbj7IMtXRMW1g21a8vd1aLoamDkMzDB2KyARAsz9qiyLIpEgZIJCo0mzM7YwOhcpagVK6_ScRVJpjHMEvGCz_wDVJYtAGBVjpuCazYbhEwAyg3nE3ovXTcmd3VsXxvBNvArdQO3Q9fwnjDtO7c62jmp-NI9EGA_cT2ljK2pi3xPxh7clr2kkN4auvWFX3jYDLU46Z-XT40fxEq83z6tiuY6DgTH2KVlLMqM8lUg5yKqy0mReVZOhyTu0CtGhrEEZJ-qJR0d-2i1knTo1Z3d_rYGItvs-fNn-sD39on4B-QVTnw</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Kang-Ho Lee</creator><creator>Sukhwan Choi</creator><creator>Jeong Oen Lee</creator><creator>Jun-Bo Yoon</creator><creator>Gyu-Hyeong Cho</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201202</creationdate><title>CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection</title><author>Kang-Ho Lee ; Sukhwan Choi ; Jeong Oen Lee ; Jun-Bo Yoon ; Gyu-Hyeong Cho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f4eaae25e8426e802bba295f3b8427efc6a366c62d039c1df4e6cef17612d4c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biosensors</topic><topic>Capacitance</topic><topic>CMOS integrated circuits</topic><topic>DNA</topic><topic>Electrodes</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang-Ho Lee</creatorcontrib><creatorcontrib>Sukhwan Choi</creatorcontrib><creatorcontrib>Jeong Oen Lee</creatorcontrib><creatorcontrib>Jun-Bo Yoon</creatorcontrib><creatorcontrib>Gyu-Hyeong Cho</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang-Ho Lee</au><au>Sukhwan Choi</au><au>Jeong Oen Lee</au><au>Jun-Bo Yoon</au><au>Gyu-Hyeong Cho</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection</atitle><btitle>2012 IEEE International Solid-State Circuits Conference</btitle><stitle>ISSCC</stitle><date>2012-02</date><risdate>2012</risdate><spage>120</spage><epage>122</epage><pages>120-122</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>1467303763</isbn><isbn>9781467303767</isbn><eisbn>9781467303774</eisbn><eisbn>1467303771</eisbn><eisbn>9781467303743</eisbn><eisbn>1467303755</eisbn><eisbn>1467303747</eisbn><eisbn>9781467303750</eisbn><abstract>Silicon devices based on impedance measurements offer label-free and direct electrical detection when used to quantify the hybridization of DNA molecules. They show rapid, robust, and inexpensive measurement and compatibility with commercial microfabrication technology. The real-time measurement of the impedance does not require the use of labeling molecules attached to the target DNA in optical and magnetic technology [1,2]. It also has the advantage of miniaturization for point-of-care (PoC) or on-site sensing applications, unlike the 3-electrode topology in electrochemical sensors [3]. Several studies have proposed capacitive biosensors that utilize a nonfaradaic process, which refers to transient currents charging a geometrical capacitor in an electrolyte-electrode interface [4]. Conventional capacitive biosensors using the excitation of the bidirectional current [5,6] can be implemented with a compact design, but they have several issues that degrade the sensitivity of the sensor, such as DC drift in the electrode caused by a charge imbalance, the electrolysis generated by DC voltage across the electrodes, the offset generated by pre-charged initial values, and weakness against common-mode noise. As a solution, we report a fully integrated capacitance-based biosensor that locates two electrodes differentially in a single current source.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2012.6176945</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0193-6530 |
ispartof | 2012 IEEE International Solid-State Circuits Conference, 2012, p.120-122 |
issn | 0193-6530 2376-8606 |
language | eng |
recordid | cdi_ieee_primary_6176945 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biosensors Capacitance CMOS integrated circuits DNA Electrodes Switches |
title | CMOS capacitive biosensor with enhanced sensitivity for label-free DNA detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CMOS%20capacitive%20biosensor%20with%20enhanced%20sensitivity%20for%20label-free%20DNA%20detection&rft.btitle=2012%20IEEE%20International%20Solid-State%20Circuits%20Conference&rft.au=Kang-Ho%20Lee&rft.date=2012-02&rft.spage=120&rft.epage=122&rft.pages=120-122&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=1467303763&rft.isbn_list=9781467303767&rft_id=info:doi/10.1109/ISSCC.2012.6176945&rft_dat=%3Cieee_6IE%3E6176945%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303774&rft.eisbn_list=1467303771&rft.eisbn_list=9781467303743&rft.eisbn_list=1467303755&rft.eisbn_list=1467303747&rft.eisbn_list=9781467303750&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6176945&rfr_iscdi=true |