Efficient analysis of warm standby systems using central limit theorem

In a warm standby sparing system, the standby units have time-dependent failure behavior; they have different failure parameters or in general distributions before and after they are used to replace the on-line faulty units. Such time-dependent behavior makes the reliability analysis of warm standby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tannous, O., Liudong Xing
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Tannous, O.
Liudong Xing
description In a warm standby sparing system, the standby units have time-dependent failure behavior; they have different failure parameters or in general distributions before and after they are used to replace the on-line faulty units. Such time-dependent behavior makes the reliability analysis of warm standby system a challenging task. Existing approaches to analyzing the reliability of warm standby systems include Markov-based methods, simulation-based methods, and combinatorial me thods. Those approaches, however, have one or more of the following limitations: 1) requiring long computation time especially when results with high degree of accuracy are desired, 2) requiring exponential time-to-failure distribution for system components, and 3) involving difficult tasks of computing convolution of multiple integrals. In this paper, based on the central limit theorem, a computationally-efficient approximate method is proposed for the reliability analysis of warm standby systems. The proposed approach has no limitation on the time-to-failure distributions for the system components. Several case studies using different time-to-failure distributions and system sizes are performed to demonstrate the application of the proposed approach.
doi_str_mv 10.1109/RAMS.2012.6175433
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6175433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6175433</ieee_id><sourcerecordid>6175433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-5bb5e35b43fea173451e37654f297d46c25413538cad0d784cfe627f6677dc103</originalsourceid><addsrcrecordid>eNpNkNtKxDAYhOMJLGsfQLzJC7Tmbw5_c7ksu6uwIngA75Y0TTTSdqWJSN_egnvh1QzMxzAMIdfASgCmb5-WD89lxaAqFaAUnJ-QXGMNQiJCLUGfkqyafcG05mf_M6HVOckYCF2AEG-XJI_xkzEGqBQHnZHN2vtggxsSNYPpphgiPXj6Y8aexmSGtplonGJyfaTfMQzv1M7saDrahT4kmj7cYXT9FbnwposuP-qCvG7WL6u7Yve4vV8td0WYh6dCNo10XDaCe2cAuZDgOCopfKWxFcpWUgCXvLamZS3WwnqnKvRKIbYWGF-Qm7_e4Jzbf42hN-O0P77CfwFqAlE6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient analysis of warm standby systems using central limit theorem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tannous, O. ; Liudong Xing</creator><creatorcontrib>Tannous, O. ; Liudong Xing</creatorcontrib><description>In a warm standby sparing system, the standby units have time-dependent failure behavior; they have different failure parameters or in general distributions before and after they are used to replace the on-line faulty units. Such time-dependent behavior makes the reliability analysis of warm standby system a challenging task. Existing approaches to analyzing the reliability of warm standby systems include Markov-based methods, simulation-based methods, and combinatorial me thods. Those approaches, however, have one or more of the following limitations: 1) requiring long computation time especially when results with high degree of accuracy are desired, 2) requiring exponential time-to-failure distribution for system components, and 3) involving difficult tasks of computing convolution of multiple integrals. In this paper, based on the central limit theorem, a computationally-efficient approximate method is proposed for the reliability analysis of warm standby systems. The proposed approach has no limitation on the time-to-failure distributions for the system components. Several case studies using different time-to-failure distributions and system sizes are performed to demonstrate the application of the proposed approach.</description><identifier>ISSN: 0149-144X</identifier><identifier>ISBN: 9781457718496</identifier><identifier>ISBN: 1457718499</identifier><identifier>EISSN: 2577-0993</identifier><identifier>EISBN: 9781457718519</identifier><identifier>EISBN: 1457718510</identifier><identifier>EISBN: 9781457718502</identifier><identifier>EISBN: 1457718502</identifier><identifier>DOI: 10.1109/RAMS.2012.6175433</identifier><language>eng</language><publisher>IEEE</publisher><subject>central limit theorem ; exponential distribution ; Gaussian distribution ; Logic gates ; normal distribution ; Random variables ; Redundancy ; Reliability theory ; warm spare ; Weibull distribution</subject><ispartof>2012 Proceedings Annual Reliability and Maintainability Symposium, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6175433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6175433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tannous, O.</creatorcontrib><creatorcontrib>Liudong Xing</creatorcontrib><title>Efficient analysis of warm standby systems using central limit theorem</title><title>2012 Proceedings Annual Reliability and Maintainability Symposium</title><addtitle>RAMS</addtitle><description>In a warm standby sparing system, the standby units have time-dependent failure behavior; they have different failure parameters or in general distributions before and after they are used to replace the on-line faulty units. Such time-dependent behavior makes the reliability analysis of warm standby system a challenging task. Existing approaches to analyzing the reliability of warm standby systems include Markov-based methods, simulation-based methods, and combinatorial me thods. Those approaches, however, have one or more of the following limitations: 1) requiring long computation time especially when results with high degree of accuracy are desired, 2) requiring exponential time-to-failure distribution for system components, and 3) involving difficult tasks of computing convolution of multiple integrals. In this paper, based on the central limit theorem, a computationally-efficient approximate method is proposed for the reliability analysis of warm standby systems. The proposed approach has no limitation on the time-to-failure distributions for the system components. Several case studies using different time-to-failure distributions and system sizes are performed to demonstrate the application of the proposed approach.</description><subject>central limit theorem</subject><subject>exponential distribution</subject><subject>Gaussian distribution</subject><subject>Logic gates</subject><subject>normal distribution</subject><subject>Random variables</subject><subject>Redundancy</subject><subject>Reliability theory</subject><subject>warm spare</subject><subject>Weibull distribution</subject><issn>0149-144X</issn><issn>2577-0993</issn><isbn>9781457718496</isbn><isbn>1457718499</isbn><isbn>9781457718519</isbn><isbn>1457718510</isbn><isbn>9781457718502</isbn><isbn>1457718502</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkNtKxDAYhOMJLGsfQLzJC7Tmbw5_c7ksu6uwIngA75Y0TTTSdqWJSN_egnvh1QzMxzAMIdfASgCmb5-WD89lxaAqFaAUnJ-QXGMNQiJCLUGfkqyafcG05mf_M6HVOckYCF2AEG-XJI_xkzEGqBQHnZHN2vtggxsSNYPpphgiPXj6Y8aexmSGtplonGJyfaTfMQzv1M7saDrahT4kmj7cYXT9FbnwposuP-qCvG7WL6u7Yve4vV8td0WYh6dCNo10XDaCe2cAuZDgOCopfKWxFcpWUgCXvLamZS3WwnqnKvRKIbYWGF-Qm7_e4Jzbf42hN-O0P77CfwFqAlE6</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Tannous, O.</creator><creator>Liudong Xing</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201201</creationdate><title>Efficient analysis of warm standby systems using central limit theorem</title><author>Tannous, O. ; Liudong Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-5bb5e35b43fea173451e37654f297d46c25413538cad0d784cfe627f6677dc103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>central limit theorem</topic><topic>exponential distribution</topic><topic>Gaussian distribution</topic><topic>Logic gates</topic><topic>normal distribution</topic><topic>Random variables</topic><topic>Redundancy</topic><topic>Reliability theory</topic><topic>warm spare</topic><topic>Weibull distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Tannous, O.</creatorcontrib><creatorcontrib>Liudong Xing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tannous, O.</au><au>Liudong Xing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient analysis of warm standby systems using central limit theorem</atitle><btitle>2012 Proceedings Annual Reliability and Maintainability Symposium</btitle><stitle>RAMS</stitle><date>2012-01</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0149-144X</issn><eissn>2577-0993</eissn><isbn>9781457718496</isbn><isbn>1457718499</isbn><eisbn>9781457718519</eisbn><eisbn>1457718510</eisbn><eisbn>9781457718502</eisbn><eisbn>1457718502</eisbn><abstract>In a warm standby sparing system, the standby units have time-dependent failure behavior; they have different failure parameters or in general distributions before and after they are used to replace the on-line faulty units. Such time-dependent behavior makes the reliability analysis of warm standby system a challenging task. Existing approaches to analyzing the reliability of warm standby systems include Markov-based methods, simulation-based methods, and combinatorial me thods. Those approaches, however, have one or more of the following limitations: 1) requiring long computation time especially when results with high degree of accuracy are desired, 2) requiring exponential time-to-failure distribution for system components, and 3) involving difficult tasks of computing convolution of multiple integrals. In this paper, based on the central limit theorem, a computationally-efficient approximate method is proposed for the reliability analysis of warm standby systems. The proposed approach has no limitation on the time-to-failure distributions for the system components. Several case studies using different time-to-failure distributions and system sizes are performed to demonstrate the application of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/RAMS.2012.6175433</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0149-144X
ispartof 2012 Proceedings Annual Reliability and Maintainability Symposium, 2012, p.1-6
issn 0149-144X
2577-0993
language eng
recordid cdi_ieee_primary_6175433
source IEEE Electronic Library (IEL) Conference Proceedings
subjects central limit theorem
exponential distribution
Gaussian distribution
Logic gates
normal distribution
Random variables
Redundancy
Reliability theory
warm spare
Weibull distribution
title Efficient analysis of warm standby systems using central limit theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20analysis%20of%20warm%20standby%20systems%20using%20central%20limit%20theorem&rft.btitle=2012%20Proceedings%20Annual%20Reliability%20and%20Maintainability%20Symposium&rft.au=Tannous,%20O.&rft.date=2012-01&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0149-144X&rft.eissn=2577-0993&rft.isbn=9781457718496&rft.isbn_list=1457718499&rft_id=info:doi/10.1109/RAMS.2012.6175433&rft_dat=%3Cieee_6IE%3E6175433%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457718519&rft.eisbn_list=1457718510&rft.eisbn_list=9781457718502&rft.eisbn_list=1457718502&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6175433&rfr_iscdi=true