Fast face detection and localization from multi-views using statistical approach

Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Anvar, S. M. H., Yau, W., Teoh, E. K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Anvar, S. M. H.
Yau, W.
Teoh, E. K.
description Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.
doi_str_mv 10.1109/ICICS.2011.6173610
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6173610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6173610</ieee_id><sourcerecordid>6173610</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1340-393e93004df474dd9b18529d3458e70e34da5cc1f5b8b46e076dcd4937aa49933</originalsourceid><addsrcrecordid>eNotUM1KxDAYjIigrn0BveQFWr_0S5rmKMV1CwsK6nlJk1Qj_aPJKvr0Fu1chvlhDkPINYOMMVC3dVVXz1kOjGUFk1gwOCGJkiXjQkoABHVKLleRq_KcJCF8wAIJKDi7IE9bHSJttXHUuuhM9ONA9WBpNxrd-R_9Z7Tz2NP-2EWffnr3Fegx-OGNhrjEIfqlSfU0zaM271fkrNVdcMnKG_K6vX-pdun-8aGu7vapZ8ghRYVOIQC3LZfcWtWwUuTKIhelk-CQWy2MYa1oyoYXDmRhjeUKpdZcKcQNufnf9c65wzT7Xs_fh_UE_AXHZ1B7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast face detection and localization from multi-views using statistical approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Anvar, S. M. H. ; Yau, W. ; Teoh, E. K.</creator><creatorcontrib>Anvar, S. M. H. ; Yau, W. ; Teoh, E. K.</creatorcontrib><description>Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.</description><identifier>ISBN: 1457700298</identifier><identifier>ISBN: 9781457700293</identifier><identifier>EISBN: 9781457700309</identifier><identifier>EISBN: 9781457700316</identifier><identifier>EISBN: 1457700301</identifier><identifier>EISBN: 145770031X</identifier><identifier>DOI: 10.1109/ICICS.2011.6173610</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Face detection ; Feature extraction ; localization ; Nose ; Real time systems ; real-time ; scale invariant feature ; statistical method ; Training</subject><ispartof>2011 8th International Conference on Information, Communications &amp; Signal Processing, 2011, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6173610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6173610$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Anvar, S. M. H.</creatorcontrib><creatorcontrib>Yau, W.</creatorcontrib><creatorcontrib>Teoh, E. K.</creatorcontrib><title>Fast face detection and localization from multi-views using statistical approach</title><title>2011 8th International Conference on Information, Communications &amp; Signal Processing</title><addtitle>ICICS</addtitle><description>Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.</description><subject>Face</subject><subject>Face detection</subject><subject>Feature extraction</subject><subject>localization</subject><subject>Nose</subject><subject>Real time systems</subject><subject>real-time</subject><subject>scale invariant feature</subject><subject>statistical method</subject><subject>Training</subject><isbn>1457700298</isbn><isbn>9781457700293</isbn><isbn>9781457700309</isbn><isbn>9781457700316</isbn><isbn>1457700301</isbn><isbn>145770031X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1KxDAYjIigrn0BveQFWr_0S5rmKMV1CwsK6nlJk1Qj_aPJKvr0Fu1chvlhDkPINYOMMVC3dVVXz1kOjGUFk1gwOCGJkiXjQkoABHVKLleRq_KcJCF8wAIJKDi7IE9bHSJttXHUuuhM9ONA9WBpNxrd-R_9Z7Tz2NP-2EWffnr3Fegx-OGNhrjEIfqlSfU0zaM271fkrNVdcMnKG_K6vX-pdun-8aGu7vapZ8ghRYVOIQC3LZfcWtWwUuTKIhelk-CQWy2MYa1oyoYXDmRhjeUKpdZcKcQNufnf9c65wzT7Xs_fh_UE_AXHZ1B7</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Anvar, S. M. H.</creator><creator>Yau, W.</creator><creator>Teoh, E. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Fast face detection and localization from multi-views using statistical approach</title><author>Anvar, S. M. H. ; Yau, W. ; Teoh, E. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1340-393e93004df474dd9b18529d3458e70e34da5cc1f5b8b46e076dcd4937aa49933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Face</topic><topic>Face detection</topic><topic>Feature extraction</topic><topic>localization</topic><topic>Nose</topic><topic>Real time systems</topic><topic>real-time</topic><topic>scale invariant feature</topic><topic>statistical method</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Anvar, S. M. H.</creatorcontrib><creatorcontrib>Yau, W.</creatorcontrib><creatorcontrib>Teoh, E. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anvar, S. M. H.</au><au>Yau, W.</au><au>Teoh, E. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast face detection and localization from multi-views using statistical approach</atitle><btitle>2011 8th International Conference on Information, Communications &amp; Signal Processing</btitle><stitle>ICICS</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1457700298</isbn><isbn>9781457700293</isbn><eisbn>9781457700309</eisbn><eisbn>9781457700316</eisbn><eisbn>1457700301</eisbn><eisbn>145770031X</eisbn><abstract>Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.2011.6173610</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457700298
ispartof 2011 8th International Conference on Information, Communications & Signal Processing, 2011, p.1-5
issn
language eng
recordid cdi_ieee_primary_6173610
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face
Face detection
Feature extraction
localization
Nose
Real time systems
real-time
scale invariant feature
statistical method
Training
title Fast face detection and localization from multi-views using statistical approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20face%20detection%20and%20localization%20from%20multi-views%20using%20statistical%20approach&rft.btitle=2011%208th%20International%20Conference%20on%20Information,%20Communications%20&%20Signal%20Processing&rft.au=Anvar,%20S.%20M.%20H.&rft.date=2011-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1457700298&rft.isbn_list=9781457700293&rft_id=info:doi/10.1109/ICICS.2011.6173610&rft_dat=%3Cieee_6IE%3E6173610%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700309&rft.eisbn_list=9781457700316&rft.eisbn_list=1457700301&rft.eisbn_list=145770031X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6173610&rfr_iscdi=true