Fast face detection and localization from multi-views using statistical approach
Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment....
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Anvar, S. M. H. Yau, W. Teoh, E. K. |
description | Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time. |
doi_str_mv | 10.1109/ICICS.2011.6173610 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6173610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6173610</ieee_id><sourcerecordid>6173610</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1340-393e93004df474dd9b18529d3458e70e34da5cc1f5b8b46e076dcd4937aa49933</originalsourceid><addsrcrecordid>eNotUM1KxDAYjIigrn0BveQFWr_0S5rmKMV1CwsK6nlJk1Qj_aPJKvr0Fu1chvlhDkPINYOMMVC3dVVXz1kOjGUFk1gwOCGJkiXjQkoABHVKLleRq_KcJCF8wAIJKDi7IE9bHSJttXHUuuhM9ONA9WBpNxrd-R_9Z7Tz2NP-2EWffnr3Fegx-OGNhrjEIfqlSfU0zaM271fkrNVdcMnKG_K6vX-pdun-8aGu7vapZ8ghRYVOIQC3LZfcWtWwUuTKIhelk-CQWy2MYa1oyoYXDmRhjeUKpdZcKcQNufnf9c65wzT7Xs_fh_UE_AXHZ1B7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fast face detection and localization from multi-views using statistical approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Anvar, S. M. H. ; Yau, W. ; Teoh, E. K.</creator><creatorcontrib>Anvar, S. M. H. ; Yau, W. ; Teoh, E. K.</creatorcontrib><description>Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.</description><identifier>ISBN: 1457700298</identifier><identifier>ISBN: 9781457700293</identifier><identifier>EISBN: 9781457700309</identifier><identifier>EISBN: 9781457700316</identifier><identifier>EISBN: 1457700301</identifier><identifier>EISBN: 145770031X</identifier><identifier>DOI: 10.1109/ICICS.2011.6173610</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Face detection ; Feature extraction ; localization ; Nose ; Real time systems ; real-time ; scale invariant feature ; statistical method ; Training</subject><ispartof>2011 8th International Conference on Information, Communications & Signal Processing, 2011, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6173610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6173610$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Anvar, S. M. H.</creatorcontrib><creatorcontrib>Yau, W.</creatorcontrib><creatorcontrib>Teoh, E. K.</creatorcontrib><title>Fast face detection and localization from multi-views using statistical approach</title><title>2011 8th International Conference on Information, Communications & Signal Processing</title><addtitle>ICICS</addtitle><description>Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.</description><subject>Face</subject><subject>Face detection</subject><subject>Feature extraction</subject><subject>localization</subject><subject>Nose</subject><subject>Real time systems</subject><subject>real-time</subject><subject>scale invariant feature</subject><subject>statistical method</subject><subject>Training</subject><isbn>1457700298</isbn><isbn>9781457700293</isbn><isbn>9781457700309</isbn><isbn>9781457700316</isbn><isbn>1457700301</isbn><isbn>145770031X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM1KxDAYjIigrn0BveQFWr_0S5rmKMV1CwsK6nlJk1Qj_aPJKvr0Fu1chvlhDkPINYOMMVC3dVVXz1kOjGUFk1gwOCGJkiXjQkoABHVKLleRq_KcJCF8wAIJKDi7IE9bHSJttXHUuuhM9ONA9WBpNxrd-R_9Z7Tz2NP-2EWffnr3Fegx-OGNhrjEIfqlSfU0zaM271fkrNVdcMnKG_K6vX-pdun-8aGu7vapZ8ghRYVOIQC3LZfcWtWwUuTKIhelk-CQWy2MYa1oyoYXDmRhjeUKpdZcKcQNufnf9c65wzT7Xs_fh_UE_AXHZ1B7</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Anvar, S. M. H.</creator><creator>Yau, W.</creator><creator>Teoh, E. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Fast face detection and localization from multi-views using statistical approach</title><author>Anvar, S. M. H. ; Yau, W. ; Teoh, E. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1340-393e93004df474dd9b18529d3458e70e34da5cc1f5b8b46e076dcd4937aa49933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Face</topic><topic>Face detection</topic><topic>Feature extraction</topic><topic>localization</topic><topic>Nose</topic><topic>Real time systems</topic><topic>real-time</topic><topic>scale invariant feature</topic><topic>statistical method</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Anvar, S. M. H.</creatorcontrib><creatorcontrib>Yau, W.</creatorcontrib><creatorcontrib>Teoh, E. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anvar, S. M. H.</au><au>Yau, W.</au><au>Teoh, E. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast face detection and localization from multi-views using statistical approach</atitle><btitle>2011 8th International Conference on Information, Communications & Signal Processing</btitle><stitle>ICICS</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1457700298</isbn><isbn>9781457700293</isbn><eisbn>9781457700309</eisbn><eisbn>9781457700316</eisbn><eisbn>1457700301</eisbn><eisbn>145770031X</eisbn><abstract>Window-based face detection methods are fast. However their results are coarse, pose dependent and require fine face alignment for face analysis. Recently a statistical approach is introduced by Toews and Arbel [1], which is able to detect faces in multiple poses and does not require face alignment. However, their method is slow compared to the window-based method. In this paper, we proposed a method, which capable of detecting faces in multiple poses in near real time and also does not require face alignment. Experimental results show that our proposed method has comparable accuracy with the Toews and Arbel's method but has significantly lower processing time.</abstract><pub>IEEE</pub><doi>10.1109/ICICS.2011.6173610</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457700298 |
ispartof | 2011 8th International Conference on Information, Communications & Signal Processing, 2011, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6173610 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Face Face detection Feature extraction localization Nose Real time systems real-time scale invariant feature statistical method Training |
title | Fast face detection and localization from multi-views using statistical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20face%20detection%20and%20localization%20from%20multi-views%20using%20statistical%20approach&rft.btitle=2011%208th%20International%20Conference%20on%20Information,%20Communications%20&%20Signal%20Processing&rft.au=Anvar,%20S.%20M.%20H.&rft.date=2011-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1457700298&rft.isbn_list=9781457700293&rft_id=info:doi/10.1109/ICICS.2011.6173610&rft_dat=%3Cieee_6IE%3E6173610%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700309&rft.eisbn_list=9781457700316&rft.eisbn_list=1457700301&rft.eisbn_list=145770031X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6173610&rfr_iscdi=true |