Particle-Based H-infinity Filter Scheme and Numerical Experiments

The H ∞ filter technique, which was developed in signal processing and control field in recent years, is introduced into data fusion method. Based on the principle of particles of forward model, a new sequential data fusion method called "particle H ∞ filter" is introduced into this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wu Zhuhui, Han Yueqi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue
container_start_page 439
container_title
container_volume
creator Wu Zhuhui
Han Yueqi
description The H ∞ filter technique, which was developed in signal processing and control field in recent years, is introduced into data fusion method. Based on the principle of particles of forward model, a new sequential data fusion method called "particle H ∞ filter" is introduced into this paper by integrating H ∞ filter technique and Monte Carlo method. This method can be used for nonlinear systems lacking the statistical properties of observational errors. To find the smallest level factor γ that could bring optimal estimations, bisection search method is embedded in the arithmetic of particle H ∞ filter and their calculation steps are also given. The numerical results also show that particle H ∞ filter data fusion method is effective and suitable to nonlinear systems in that it does not rely on the statistical properties of observational errors and has better robustness.
doi_str_mv 10.1109/ISdea.2012.479
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6173240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6173240</ieee_id><sourcerecordid>6173240</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d43022de4dec6fd3f255feff2c527de1dcbfb9e59f3f37cdbd2bde5a5737e2253</originalsourceid><addsrcrecordid>eNotjcFOwzAQRI0QEqjkyoWLfyBhvbbj-liqllaqAKm9V453LYySqEqCRP-eCjjNvMO8EeJBQaUU-KftnjhUCAor4_yVKLybg6u9NTXM3fUvK2OdQ4Vgb0Uxjp8AcNnWGtWdWLyHYcqx5fI5jExyU-Y-5T5PZ7nO7cSD3McP7liGnuTrV8dDjqGVq-_TpXXcT-O9uEmhHbn4z5k4rFeH5abcvb1sl4tdmT1MJRkNiMSGONaJdEJrE6eE0aIjVhSb1Hi2PumkXaSGsCG2wTrtGNHqmXj802ZmPp4u52E4H2vlNBrQP2UYTDY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Particle-Based H-infinity Filter Scheme and Numerical Experiments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Zhuhui ; Han Yueqi</creator><creatorcontrib>Wu Zhuhui ; Han Yueqi</creatorcontrib><description>The H ∞ filter technique, which was developed in signal processing and control field in recent years, is introduced into data fusion method. Based on the principle of particles of forward model, a new sequential data fusion method called "particle H ∞ filter" is introduced into this paper by integrating H ∞ filter technique and Monte Carlo method. This method can be used for nonlinear systems lacking the statistical properties of observational errors. To find the smallest level factor γ that could bring optimal estimations, bisection search method is embedded in the arithmetic of particle H ∞ filter and their calculation steps are also given. The numerical results also show that particle H ∞ filter data fusion method is effective and suitable to nonlinear systems in that it does not rely on the statistical properties of observational errors and has better robustness.</description><identifier>ISBN: 9781457721205</identifier><identifier>ISBN: 1457721201</identifier><identifier>EISBN: 9780769546087</identifier><identifier>EISBN: 0769546080</identifier><identifier>DOI: 10.1109/ISdea.2012.479</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; data fusion ; Estimation ; Filtering algorithms ; Filtering theory ; Mathematical model ; Monte Carlo method ; Noise ; particle H¡Þ filter ; Robustness</subject><ispartof>2012 Second International Conference on Intelligent System Design and Engineering Application, 2012, p.439-442</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6173240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6173240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Zhuhui</creatorcontrib><creatorcontrib>Han Yueqi</creatorcontrib><title>Particle-Based H-infinity Filter Scheme and Numerical Experiments</title><title>2012 Second International Conference on Intelligent System Design and Engineering Application</title><addtitle>isdea</addtitle><description>The H ∞ filter technique, which was developed in signal processing and control field in recent years, is introduced into data fusion method. Based on the principle of particles of forward model, a new sequential data fusion method called "particle H ∞ filter" is introduced into this paper by integrating H ∞ filter technique and Monte Carlo method. This method can be used for nonlinear systems lacking the statistical properties of observational errors. To find the smallest level factor γ that could bring optimal estimations, bisection search method is embedded in the arithmetic of particle H ∞ filter and their calculation steps are also given. The numerical results also show that particle H ∞ filter data fusion method is effective and suitable to nonlinear systems in that it does not rely on the statistical properties of observational errors and has better robustness.</description><subject>Covariance matrix</subject><subject>data fusion</subject><subject>Estimation</subject><subject>Filtering algorithms</subject><subject>Filtering theory</subject><subject>Mathematical model</subject><subject>Monte Carlo method</subject><subject>Noise</subject><subject>particle H¡Þ filter</subject><subject>Robustness</subject><isbn>9781457721205</isbn><isbn>1457721201</isbn><isbn>9780769546087</isbn><isbn>0769546080</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjcFOwzAQRI0QEqjkyoWLfyBhvbbj-liqllaqAKm9V453LYySqEqCRP-eCjjNvMO8EeJBQaUU-KftnjhUCAor4_yVKLybg6u9NTXM3fUvK2OdQ4Vgb0Uxjp8AcNnWGtWdWLyHYcqx5fI5jExyU-Y-5T5PZ7nO7cSD3McP7liGnuTrV8dDjqGVq-_TpXXcT-O9uEmhHbn4z5k4rFeH5abcvb1sl4tdmT1MJRkNiMSGONaJdEJrE6eE0aIjVhSb1Hi2PumkXaSGsCG2wTrtGNHqmXj802ZmPp4u52E4H2vlNBrQP2UYTDY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Wu Zhuhui</creator><creator>Han Yueqi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201201</creationdate><title>Particle-Based H-infinity Filter Scheme and Numerical Experiments</title><author>Wu Zhuhui ; Han Yueqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d43022de4dec6fd3f255feff2c527de1dcbfb9e59f3f37cdbd2bde5a5737e2253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Covariance matrix</topic><topic>data fusion</topic><topic>Estimation</topic><topic>Filtering algorithms</topic><topic>Filtering theory</topic><topic>Mathematical model</topic><topic>Monte Carlo method</topic><topic>Noise</topic><topic>particle H¡Þ filter</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Zhuhui</creatorcontrib><creatorcontrib>Han Yueqi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Zhuhui</au><au>Han Yueqi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Particle-Based H-infinity Filter Scheme and Numerical Experiments</atitle><btitle>2012 Second International Conference on Intelligent System Design and Engineering Application</btitle><stitle>isdea</stitle><date>2012-01</date><risdate>2012</risdate><spage>439</spage><epage>442</epage><pages>439-442</pages><isbn>9781457721205</isbn><isbn>1457721201</isbn><eisbn>9780769546087</eisbn><eisbn>0769546080</eisbn><abstract>The H ∞ filter technique, which was developed in signal processing and control field in recent years, is introduced into data fusion method. Based on the principle of particles of forward model, a new sequential data fusion method called "particle H ∞ filter" is introduced into this paper by integrating H ∞ filter technique and Monte Carlo method. This method can be used for nonlinear systems lacking the statistical properties of observational errors. To find the smallest level factor γ that could bring optimal estimations, bisection search method is embedded in the arithmetic of particle H ∞ filter and their calculation steps are also given. The numerical results also show that particle H ∞ filter data fusion method is effective and suitable to nonlinear systems in that it does not rely on the statistical properties of observational errors and has better robustness.</abstract><pub>IEEE</pub><doi>10.1109/ISdea.2012.479</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457721205
ispartof 2012 Second International Conference on Intelligent System Design and Engineering Application, 2012, p.439-442
issn
language eng
recordid cdi_ieee_primary_6173240
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrix
data fusion
Estimation
Filtering algorithms
Filtering theory
Mathematical model
Monte Carlo method
Noise
particle H¡Þ filter
Robustness
title Particle-Based H-infinity Filter Scheme and Numerical Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Particle-Based%20H-infinity%20Filter%20Scheme%20and%20Numerical%20Experiments&rft.btitle=2012%20Second%20International%20Conference%20on%20Intelligent%20System%20Design%20and%20Engineering%20Application&rft.au=Wu%20Zhuhui&rft.date=2012-01&rft.spage=439&rft.epage=442&rft.pages=439-442&rft.isbn=9781457721205&rft.isbn_list=1457721201&rft_id=info:doi/10.1109/ISdea.2012.479&rft_dat=%3Cieee_6IE%3E6173240%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546087&rft.eisbn_list=0769546080&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6173240&rfr_iscdi=true