Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force
We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | |
container_volume | |
creator | Kuribayashi-Shigetomi, K. Onoe, H. Takeuchi, S. |
description | We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator. |
doi_str_mv | 10.1109/MEMSYS.2012.6170096 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6170096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6170096</ieee_id><sourcerecordid>6170096</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a5a1ecc1c1b6b0f6a63d958c4e61d2a12c3e7c9e74c79ff139cae6a25cfcef9e3</originalsourceid><addsrcrecordid>eNpVkE9PAjEUxGvUREQ-AZd-gV37trvt1psi_kkgHtCDJ1LevmLNQkm7kPDtJcJBT5OZ_GYOw9gQRA4gzO10PJ19zvJCQJEr0EIYdcYGRtdQKi2FLKrq_J8v6wvWA1GXmTLGXLHrlL6FOPRL02O7GbUuc6Ft_HrJkdqWh-iXduXv-IPt8ItvYkBKiQfH019WPv7iWWsbWvOVxxhSF7fYbSMlbg9qO2r4Yn9c7eIh8mHNXYhIN-zS2TbR4KR99vE0fh-9ZJO359fR_STzoKsus5UFQgSEhVoIp6ySjalqLElBU1goUJJGQ7pEbZwDadCSskWFDskZkn02PO56Ippvol_ZuJ-fbpM_26JiKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuribayashi-Shigetomi, K. ; Onoe, H. ; Takeuchi, S.</creator><creatorcontrib>Kuribayashi-Shigetomi, K. ; Onoe, H. ; Takeuchi, S.</creatorcontrib><description>We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.</description><identifier>ISSN: 1084-6999</identifier><identifier>ISBN: 9781467303248</identifier><identifier>ISBN: 1467303240</identifier><identifier>EISBN: 9781467303255</identifier><identifier>EISBN: 1467303259</identifier><identifier>DOI: 10.1109/MEMSYS.2012.6170096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fluorescence ; Joints ; Microscopy ; Microstructure ; Polymers ; Substrates ; Three dimensional displays</subject><ispartof>2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, p.72-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6170096$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6170096$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuribayashi-Shigetomi, K.</creatorcontrib><creatorcontrib>Onoe, H.</creatorcontrib><creatorcontrib>Takeuchi, S.</creatorcontrib><title>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</title><title>2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)</title><addtitle>MEMSYS</addtitle><description>We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.</description><subject>Fluorescence</subject><subject>Joints</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Polymers</subject><subject>Substrates</subject><subject>Three dimensional displays</subject><issn>1084-6999</issn><isbn>9781467303248</isbn><isbn>1467303240</isbn><isbn>9781467303255</isbn><isbn>1467303259</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE9PAjEUxGvUREQ-AZd-gV37trvt1psi_kkgHtCDJ1LevmLNQkm7kPDtJcJBT5OZ_GYOw9gQRA4gzO10PJ19zvJCQJEr0EIYdcYGRtdQKi2FLKrq_J8v6wvWA1GXmTLGXLHrlL6FOPRL02O7GbUuc6Ft_HrJkdqWh-iXduXv-IPt8ItvYkBKiQfH019WPv7iWWsbWvOVxxhSF7fYbSMlbg9qO2r4Yn9c7eIh8mHNXYhIN-zS2TbR4KR99vE0fh-9ZJO359fR_STzoKsus5UFQgSEhVoIp6ySjalqLElBU1goUJJGQ7pEbZwDadCSskWFDskZkn02PO56Ippvol_ZuJ-fbpM_26JiKw</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Kuribayashi-Shigetomi, K.</creator><creator>Onoe, H.</creator><creator>Takeuchi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201201</creationdate><title>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</title><author>Kuribayashi-Shigetomi, K. ; Onoe, H. ; Takeuchi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a5a1ecc1c1b6b0f6a63d958c4e61d2a12c3e7c9e74c79ff139cae6a25cfcef9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Fluorescence</topic><topic>Joints</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Polymers</topic><topic>Substrates</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuribayashi-Shigetomi, K.</creatorcontrib><creatorcontrib>Onoe, H.</creatorcontrib><creatorcontrib>Takeuchi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuribayashi-Shigetomi, K.</au><au>Onoe, H.</au><au>Takeuchi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</atitle><btitle>2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)</btitle><stitle>MEMSYS</stitle><date>2012-01</date><risdate>2012</risdate><spage>72</spage><epage>75</epage><pages>72-75</pages><issn>1084-6999</issn><isbn>9781467303248</isbn><isbn>1467303240</isbn><eisbn>9781467303255</eisbn><eisbn>1467303259</eisbn><abstract>We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.</abstract><pub>IEEE</pub><doi>10.1109/MEMSYS.2012.6170096</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1084-6999 |
ispartof | 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, p.72-75 |
issn | 1084-6999 |
language | eng |
recordid | cdi_ieee_primary_6170096 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Fluorescence Joints Microscopy Microstructure Polymers Substrates Three dimensional displays |
title | Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-folding%20cell%20origami:%20Batch%20process%20of%20self-folding%203D%20cell-laden%20microstructures%20actuated%20by%20cell%20traction%20force&rft.btitle=2012%20IEEE%2025th%20International%20Conference%20on%20Micro%20Electro%20Mechanical%20Systems%20(MEMS)&rft.au=Kuribayashi-Shigetomi,%20K.&rft.date=2012-01&rft.spage=72&rft.epage=75&rft.pages=72-75&rft.issn=1084-6999&rft.isbn=9781467303248&rft.isbn_list=1467303240&rft_id=info:doi/10.1109/MEMSYS.2012.6170096&rft_dat=%3Cieee_6IE%3E6170096%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303255&rft.eisbn_list=1467303259&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6170096&rfr_iscdi=true |