Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force

We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kuribayashi-Shigetomi, K., Onoe, H., Takeuchi, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 72
container_title
container_volume
creator Kuribayashi-Shigetomi, K.
Onoe, H.
Takeuchi, S.
description We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.
doi_str_mv 10.1109/MEMSYS.2012.6170096
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6170096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6170096</ieee_id><sourcerecordid>6170096</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a5a1ecc1c1b6b0f6a63d958c4e61d2a12c3e7c9e74c79ff139cae6a25cfcef9e3</originalsourceid><addsrcrecordid>eNpVkE9PAjEUxGvUREQ-AZd-gV37trvt1psi_kkgHtCDJ1LevmLNQkm7kPDtJcJBT5OZ_GYOw9gQRA4gzO10PJ19zvJCQJEr0EIYdcYGRtdQKi2FLKrq_J8v6wvWA1GXmTLGXLHrlL6FOPRL02O7GbUuc6Ft_HrJkdqWh-iXduXv-IPt8ItvYkBKiQfH019WPv7iWWsbWvOVxxhSF7fYbSMlbg9qO2r4Yn9c7eIh8mHNXYhIN-zS2TbR4KR99vE0fh-9ZJO359fR_STzoKsus5UFQgSEhVoIp6ySjalqLElBU1goUJJGQ7pEbZwDadCSskWFDskZkn02PO56Ippvol_ZuJ-fbpM_26JiKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuribayashi-Shigetomi, K. ; Onoe, H. ; Takeuchi, S.</creator><creatorcontrib>Kuribayashi-Shigetomi, K. ; Onoe, H. ; Takeuchi, S.</creatorcontrib><description>We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.</description><identifier>ISSN: 1084-6999</identifier><identifier>ISBN: 9781467303248</identifier><identifier>ISBN: 1467303240</identifier><identifier>EISBN: 9781467303255</identifier><identifier>EISBN: 1467303259</identifier><identifier>DOI: 10.1109/MEMSYS.2012.6170096</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fluorescence ; Joints ; Microscopy ; Microstructure ; Polymers ; Substrates ; Three dimensional displays</subject><ispartof>2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, p.72-75</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6170096$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6170096$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuribayashi-Shigetomi, K.</creatorcontrib><creatorcontrib>Onoe, H.</creatorcontrib><creatorcontrib>Takeuchi, S.</creatorcontrib><title>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</title><title>2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)</title><addtitle>MEMSYS</addtitle><description>We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.</description><subject>Fluorescence</subject><subject>Joints</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Polymers</subject><subject>Substrates</subject><subject>Three dimensional displays</subject><issn>1084-6999</issn><isbn>9781467303248</isbn><isbn>1467303240</isbn><isbn>9781467303255</isbn><isbn>1467303259</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE9PAjEUxGvUREQ-AZd-gV37trvt1psi_kkgHtCDJ1LevmLNQkm7kPDtJcJBT5OZ_GYOw9gQRA4gzO10PJ19zvJCQJEr0EIYdcYGRtdQKi2FLKrq_J8v6wvWA1GXmTLGXLHrlL6FOPRL02O7GbUuc6Ft_HrJkdqWh-iXduXv-IPt8ItvYkBKiQfH019WPv7iWWsbWvOVxxhSF7fYbSMlbg9qO2r4Yn9c7eIh8mHNXYhIN-zS2TbR4KR99vE0fh-9ZJO359fR_STzoKsus5UFQgSEhVoIp6ySjalqLElBU1goUJJGQ7pEbZwDadCSskWFDskZkn02PO56Ippvol_ZuJ-fbpM_26JiKw</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Kuribayashi-Shigetomi, K.</creator><creator>Onoe, H.</creator><creator>Takeuchi, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201201</creationdate><title>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</title><author>Kuribayashi-Shigetomi, K. ; Onoe, H. ; Takeuchi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a5a1ecc1c1b6b0f6a63d958c4e61d2a12c3e7c9e74c79ff139cae6a25cfcef9e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Fluorescence</topic><topic>Joints</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Polymers</topic><topic>Substrates</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuribayashi-Shigetomi, K.</creatorcontrib><creatorcontrib>Onoe, H.</creatorcontrib><creatorcontrib>Takeuchi, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuribayashi-Shigetomi, K.</au><au>Onoe, H.</au><au>Takeuchi, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force</atitle><btitle>2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)</btitle><stitle>MEMSYS</stitle><date>2012-01</date><risdate>2012</risdate><spage>72</spage><epage>75</epage><pages>72-75</pages><issn>1084-6999</issn><isbn>9781467303248</isbn><isbn>1467303240</isbn><eisbn>9781467303255</eisbn><eisbn>1467303259</eisbn><abstract>We use cell traction force (CTF) to self-fold flat microplates into diverse three-dimensional (3D) cell-laden microstructures (Figure 1). Cells were selectively cultured onto the flat microfabricated plates. Immediately after detaching the plates from the glass substrate, the plates were lifted and folded up into the 3D microstructures due to the CTF caused by stretched cells that adhered between two plates. We achieved precise folding angles between the folding microplate and glass substrate by producing a flexible joint between the plates. Using the microplates with the flexible joint, we also achieved batch process of self-folding 3D cell-laden microstructures. In addition, we succeed to produce micro-flapping structures using cardiomyocytes as an actuator.</abstract><pub>IEEE</pub><doi>10.1109/MEMSYS.2012.6170096</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1084-6999
ispartof 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, p.72-75
issn 1084-6999
language eng
recordid cdi_ieee_primary_6170096
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fluorescence
Joints
Microscopy
Microstructure
Polymers
Substrates
Three dimensional displays
title Self-folding cell origami: Batch process of self-folding 3D cell-laden microstructures actuated by cell traction force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-folding%20cell%20origami:%20Batch%20process%20of%20self-folding%203D%20cell-laden%20microstructures%20actuated%20by%20cell%20traction%20force&rft.btitle=2012%20IEEE%2025th%20International%20Conference%20on%20Micro%20Electro%20Mechanical%20Systems%20(MEMS)&rft.au=Kuribayashi-Shigetomi,%20K.&rft.date=2012-01&rft.spage=72&rft.epage=75&rft.pages=72-75&rft.issn=1084-6999&rft.isbn=9781467303248&rft.isbn_list=1467303240&rft_id=info:doi/10.1109/MEMSYS.2012.6170096&rft_dat=%3Cieee_6IE%3E6170096%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303255&rft.eisbn_list=1467303259&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6170096&rfr_iscdi=true