An experiential analysis of microarray time series data of cancer metastasis using XMAS

Time series microarray analysis provides an invaluable insight into genetic progression of biological processes such as tumor metastasis. Many algorithms sustain statistical analysis which limits user interaction. We use XMAS to extract knowledge from datasets which increases human-computer synergy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Samuel, Azariah A., Suresh, Xavier M., Devi, Vaishnavi M., Kumari, Radha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 61
container_title
container_volume
creator Samuel, Azariah A.
Suresh, Xavier M.
Devi, Vaishnavi M.
Kumari, Radha
description Time series microarray analysis provides an invaluable insight into genetic progression of biological processes such as tumor metastasis. Many algorithms sustain statistical analysis which limits user interaction. We use XMAS to extract knowledge from datasets which increases human-computer synergy, thus providing increased analysis experience. Cancer Metastasis involves complex biological pathway information. The domain knowledge to deciphering these complex data can be integrated using XMAS which offers visual interaction and interoperable operators. Thus XMAS differs from the traditional `sit back' approach of traditional systems to offer `sit forward' analysis to validate results in an unparalleled serendipitous manner.
doi_str_mv 10.1109/TISC.2011.6169085
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6169085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6169085</ieee_id><sourcerecordid>6169085</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-abb673694e6cbb141e06a7528e0135a40e87740dbf312bf2c02ddecf28c2ba3c3</originalsourceid><addsrcrecordid>eNpVUNtKAzEQjahgqf0A8SU_sHUm2UvyWIqXQsWHLuhbmWRnJdLdlmQF-_dusS_CwOFwLhxGiDuEOSLYh3q1Wc4VIM5LLC2Y4kLMbGUwLysNqJW9_MdzfSUmSqsiKyzaGzFL6QsANBpjACfifdFL_jlwDNwPgXaSetodU0hy38ou-LinGOkoh9CxTCdbkg0NdJI99Z6j7HigNN6Y-U6h_5Qfr4vNrbhuaZd4dsapqJ8e6-VLtn57Xi0X6yxYGDJybpxZ2pxL7xzmyFBSVSjD4_SCcmBTVTk0rtWoXKs8qKZh3yrjlSPt9VTc_9UGZt4eYugoHrfnz-hf0JdVhQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An experiential analysis of microarray time series data of cancer metastasis using XMAS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Samuel, Azariah A. ; Suresh, Xavier M. ; Devi, Vaishnavi M. ; Kumari, Radha</creator><creatorcontrib>Samuel, Azariah A. ; Suresh, Xavier M. ; Devi, Vaishnavi M. ; Kumari, Radha</creatorcontrib><description>Time series microarray analysis provides an invaluable insight into genetic progression of biological processes such as tumor metastasis. Many algorithms sustain statistical analysis which limits user interaction. We use XMAS to extract knowledge from datasets which increases human-computer synergy, thus providing increased analysis experience. Cancer Metastasis involves complex biological pathway information. The domain knowledge to deciphering these complex data can be integrated using XMAS which offers visual interaction and interoperable operators. Thus XMAS differs from the traditional `sit back' approach of traditional systems to offer `sit forward' analysis to validate results in an unparalleled serendipitous manner.</description><identifier>ISSN: 2325-5919</identifier><identifier>ISBN: 9781467301343</identifier><identifier>ISBN: 1467301345</identifier><identifier>EISBN: 9781467301329</identifier><identifier>EISBN: 1467301337</identifier><identifier>EISBN: 1467301329</identifier><identifier>EISBN: 9781467301336</identifier><identifier>DOI: 10.1109/TISC.2011.6169085</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cancer metastasis ; Computers ; Human computer interaction ; sit forward analysis ; Time series analysis ; Trajectory ; XMAS</subject><ispartof>3rd International Conference on Trendz in Information Sciences &amp; Computing (TISC2011), 2011, p.61-64</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6169085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6169085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Samuel, Azariah A.</creatorcontrib><creatorcontrib>Suresh, Xavier M.</creatorcontrib><creatorcontrib>Devi, Vaishnavi M.</creatorcontrib><creatorcontrib>Kumari, Radha</creatorcontrib><title>An experiential analysis of microarray time series data of cancer metastasis using XMAS</title><title>3rd International Conference on Trendz in Information Sciences &amp; Computing (TISC2011)</title><addtitle>TISC</addtitle><description>Time series microarray analysis provides an invaluable insight into genetic progression of biological processes such as tumor metastasis. Many algorithms sustain statistical analysis which limits user interaction. We use XMAS to extract knowledge from datasets which increases human-computer synergy, thus providing increased analysis experience. Cancer Metastasis involves complex biological pathway information. The domain knowledge to deciphering these complex data can be integrated using XMAS which offers visual interaction and interoperable operators. Thus XMAS differs from the traditional `sit back' approach of traditional systems to offer `sit forward' analysis to validate results in an unparalleled serendipitous manner.</description><subject>Cancer metastasis</subject><subject>Computers</subject><subject>Human computer interaction</subject><subject>sit forward analysis</subject><subject>Time series analysis</subject><subject>Trajectory</subject><subject>XMAS</subject><issn>2325-5919</issn><isbn>9781467301343</isbn><isbn>1467301345</isbn><isbn>9781467301329</isbn><isbn>1467301337</isbn><isbn>1467301329</isbn><isbn>9781467301336</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUNtKAzEQjahgqf0A8SU_sHUm2UvyWIqXQsWHLuhbmWRnJdLdlmQF-_dusS_CwOFwLhxGiDuEOSLYh3q1Wc4VIM5LLC2Y4kLMbGUwLysNqJW9_MdzfSUmSqsiKyzaGzFL6QsANBpjACfifdFL_jlwDNwPgXaSetodU0hy38ou-LinGOkoh9CxTCdbkg0NdJI99Z6j7HigNN6Y-U6h_5Qfr4vNrbhuaZd4dsapqJ8e6-VLtn57Xi0X6yxYGDJybpxZ2pxL7xzmyFBSVSjD4_SCcmBTVTk0rtWoXKs8qKZh3yrjlSPt9VTc_9UGZt4eYugoHrfnz-hf0JdVhQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Samuel, Azariah A.</creator><creator>Suresh, Xavier M.</creator><creator>Devi, Vaishnavi M.</creator><creator>Kumari, Radha</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>An experiential analysis of microarray time series data of cancer metastasis using XMAS</title><author>Samuel, Azariah A. ; Suresh, Xavier M. ; Devi, Vaishnavi M. ; Kumari, Radha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-abb673694e6cbb141e06a7528e0135a40e87740dbf312bf2c02ddecf28c2ba3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cancer metastasis</topic><topic>Computers</topic><topic>Human computer interaction</topic><topic>sit forward analysis</topic><topic>Time series analysis</topic><topic>Trajectory</topic><topic>XMAS</topic><toplevel>online_resources</toplevel><creatorcontrib>Samuel, Azariah A.</creatorcontrib><creatorcontrib>Suresh, Xavier M.</creatorcontrib><creatorcontrib>Devi, Vaishnavi M.</creatorcontrib><creatorcontrib>Kumari, Radha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Samuel, Azariah A.</au><au>Suresh, Xavier M.</au><au>Devi, Vaishnavi M.</au><au>Kumari, Radha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An experiential analysis of microarray time series data of cancer metastasis using XMAS</atitle><btitle>3rd International Conference on Trendz in Information Sciences &amp; Computing (TISC2011)</btitle><stitle>TISC</stitle><date>2011-12</date><risdate>2011</risdate><spage>61</spage><epage>64</epage><pages>61-64</pages><issn>2325-5919</issn><isbn>9781467301343</isbn><isbn>1467301345</isbn><eisbn>9781467301329</eisbn><eisbn>1467301337</eisbn><eisbn>1467301329</eisbn><eisbn>9781467301336</eisbn><abstract>Time series microarray analysis provides an invaluable insight into genetic progression of biological processes such as tumor metastasis. Many algorithms sustain statistical analysis which limits user interaction. We use XMAS to extract knowledge from datasets which increases human-computer synergy, thus providing increased analysis experience. Cancer Metastasis involves complex biological pathway information. The domain knowledge to deciphering these complex data can be integrated using XMAS which offers visual interaction and interoperable operators. Thus XMAS differs from the traditional `sit back' approach of traditional systems to offer `sit forward' analysis to validate results in an unparalleled serendipitous manner.</abstract><pub>IEEE</pub><doi>10.1109/TISC.2011.6169085</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5919
ispartof 3rd International Conference on Trendz in Information Sciences & Computing (TISC2011), 2011, p.61-64
issn 2325-5919
language eng
recordid cdi_ieee_primary_6169085
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cancer metastasis
Computers
Human computer interaction
sit forward analysis
Time series analysis
Trajectory
XMAS
title An experiential analysis of microarray time series data of cancer metastasis using XMAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20experiential%20analysis%20of%20microarray%20time%20series%20data%20of%20cancer%20metastasis%20using%20XMAS&rft.btitle=3rd%20International%20Conference%20on%20Trendz%20in%20Information%20Sciences%20&%20Computing%20(TISC2011)&rft.au=Samuel,%20Azariah%20A.&rft.date=2011-12&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.issn=2325-5919&rft.isbn=9781467301343&rft.isbn_list=1467301345&rft_id=info:doi/10.1109/TISC.2011.6169085&rft_dat=%3Cieee_6IE%3E6169085%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467301329&rft.eisbn_list=1467301337&rft.eisbn_list=1467301329&rft.eisbn_list=9781467301336&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6169085&rfr_iscdi=true