Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs

Intelligently partitioning the last-level cache within a chip multiprocessor can bring significant performance improvements. Resources are given to the applications that can benefit most from them, restricting each core to a number of logical cache ways. However, although overall performance is incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sundararajan, K. T., Porpodas, V., Jones, T. M., Topham, N. P., Franke, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title
container_volume
creator Sundararajan, K. T.
Porpodas, V.
Jones, T. M.
Topham, N. P.
Franke, B.
description Intelligently partitioning the last-level cache within a chip multiprocessor can bring significant performance improvements. Resources are given to the applications that can benefit most from them, restricting each core to a number of logical cache ways. However, although overall performance is increased, existing schemes fail to consider energy saving when making their partitioning decisions. This paper presents Cooperative Partitioning, a runtime partitioning scheme that reduces both dynamic and static energy while maintaining high performance. It works by enforcing cached data to be way-aligned, so that a way is owned by a single core at any time. Cores cooperate with each other to migrate ways between themselves after partitioning decisions have been made. Upon access to the cache, a core needs only to consult the ways that it owns to find its data, saving dynamic energy. Unused ways can be power-gated for static energy saving. We evaluate our approach on two-core and four-core systems, showing that we obtain average dynamic and static energy savings of 35% and 25% compared to a fixed partitioning scheme. In addition, Cooperative Partitioning maintains high performance while transferring ways five times faster than an existing state-of-the-art technique.
doi_str_mv 10.1109/HPCA.2012.6169036
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6169036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6169036</ieee_id><sourcerecordid>6169036</sourcerecordid><originalsourceid>FETCH-LOGICAL-i284t-7bed184c13e1db99d49ec00db973af008148f3eefbed793115f3c1ff912fe2e13</originalsourceid><addsrcrecordid>eNpVkM1qwzAQhNU_aEjzAKUXv4DSXcnRT2_BJE0hpTm0tLegyCtHpbGNbQp5-wqaS_ayw8zwwS5j9whTRLCPq00xnwpAMVWoLEh1wSZWG8yVlmCE0pdsJKQ2XID8ujrLdH7NRjiTwMFYfcsmff8NaZSyyR2xz6JpWurcEH8pa103xCE2dayrp2xRU1cdOYUQfaR6yLzz-_NSFpou28dqzxMj6YOrPWXF66a_YzfB_fQ0Oe0x-1gu3osVX789vxTzNY_C5APXOyrR5B4lYbmztswteYAktXQBIN1hgiQKqaetRJwF6TEEiyKQIJRj9vDPjUS0bbt4cN1xe3qT_AMjJFia</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sundararajan, K. T. ; Porpodas, V. ; Jones, T. M. ; Topham, N. P. ; Franke, B.</creator><creatorcontrib>Sundararajan, K. T. ; Porpodas, V. ; Jones, T. M. ; Topham, N. P. ; Franke, B.</creatorcontrib><description>Intelligently partitioning the last-level cache within a chip multiprocessor can bring significant performance improvements. Resources are given to the applications that can benefit most from them, restricting each core to a number of logical cache ways. However, although overall performance is increased, existing schemes fail to consider energy saving when making their partitioning decisions. This paper presents Cooperative Partitioning, a runtime partitioning scheme that reduces both dynamic and static energy while maintaining high performance. It works by enforcing cached data to be way-aligned, so that a way is owned by a single core at any time. Cores cooperate with each other to migrate ways between themselves after partitioning decisions have been made. Upon access to the cache, a core needs only to consult the ways that it owns to find its data, saving dynamic energy. Unused ways can be power-gated for static energy saving. We evaluate our approach on two-core and four-core systems, showing that we obtain average dynamic and static energy savings of 35% and 25% compared to a fixed partitioning scheme. In addition, Cooperative Partitioning maintains high performance while transferring ways five times faster than an existing state-of-the-art technique.</description><identifier>ISSN: 1530-0897</identifier><identifier>ISBN: 9781467308274</identifier><identifier>ISBN: 1467308277</identifier><identifier>EISSN: 2378-203X</identifier><identifier>EISBN: 9781467308267</identifier><identifier>EISBN: 1467308250</identifier><identifier>EISBN: 9781467308250</identifier><identifier>EISBN: 1467308269</identifier><identifier>DOI: 10.1109/HPCA.2012.6169036</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hardware ; Monitoring ; Partitioning algorithms ; Registers ; Resource management ; Vectors ; Wireless application protocol</subject><ispartof>IEEE International Symposium on High-Performance Comp Architecture, 2012, p.1-12</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6169036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6169036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sundararajan, K. T.</creatorcontrib><creatorcontrib>Porpodas, V.</creatorcontrib><creatorcontrib>Jones, T. M.</creatorcontrib><creatorcontrib>Topham, N. P.</creatorcontrib><creatorcontrib>Franke, B.</creatorcontrib><title>Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs</title><title>IEEE International Symposium on High-Performance Comp Architecture</title><addtitle>HPCA</addtitle><description>Intelligently partitioning the last-level cache within a chip multiprocessor can bring significant performance improvements. Resources are given to the applications that can benefit most from them, restricting each core to a number of logical cache ways. However, although overall performance is increased, existing schemes fail to consider energy saving when making their partitioning decisions. This paper presents Cooperative Partitioning, a runtime partitioning scheme that reduces both dynamic and static energy while maintaining high performance. It works by enforcing cached data to be way-aligned, so that a way is owned by a single core at any time. Cores cooperate with each other to migrate ways between themselves after partitioning decisions have been made. Upon access to the cache, a core needs only to consult the ways that it owns to find its data, saving dynamic energy. Unused ways can be power-gated for static energy saving. We evaluate our approach on two-core and four-core systems, showing that we obtain average dynamic and static energy savings of 35% and 25% compared to a fixed partitioning scheme. In addition, Cooperative Partitioning maintains high performance while transferring ways five times faster than an existing state-of-the-art technique.</description><subject>Hardware</subject><subject>Monitoring</subject><subject>Partitioning algorithms</subject><subject>Registers</subject><subject>Resource management</subject><subject>Vectors</subject><subject>Wireless application protocol</subject><issn>1530-0897</issn><issn>2378-203X</issn><isbn>9781467308274</isbn><isbn>1467308277</isbn><isbn>9781467308267</isbn><isbn>1467308250</isbn><isbn>9781467308250</isbn><isbn>1467308269</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1qwzAQhNU_aEjzAKUXv4DSXcnRT2_BJE0hpTm0tLegyCtHpbGNbQp5-wqaS_ayw8zwwS5j9whTRLCPq00xnwpAMVWoLEh1wSZWG8yVlmCE0pdsJKQ2XID8ujrLdH7NRjiTwMFYfcsmff8NaZSyyR2xz6JpWurcEH8pa103xCE2dayrp2xRU1cdOYUQfaR6yLzz-_NSFpou28dqzxMj6YOrPWXF66a_YzfB_fQ0Oe0x-1gu3osVX789vxTzNY_C5APXOyrR5B4lYbmztswteYAktXQBIN1hgiQKqaetRJwF6TEEiyKQIJRj9vDPjUS0bbt4cN1xe3qT_AMjJFia</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Sundararajan, K. T.</creator><creator>Porpodas, V.</creator><creator>Jones, T. M.</creator><creator>Topham, N. P.</creator><creator>Franke, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs</title><author>Sundararajan, K. T. ; Porpodas, V. ; Jones, T. M. ; Topham, N. P. ; Franke, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i284t-7bed184c13e1db99d49ec00db973af008148f3eefbed793115f3c1ff912fe2e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Hardware</topic><topic>Monitoring</topic><topic>Partitioning algorithms</topic><topic>Registers</topic><topic>Resource management</topic><topic>Vectors</topic><topic>Wireless application protocol</topic><toplevel>online_resources</toplevel><creatorcontrib>Sundararajan, K. T.</creatorcontrib><creatorcontrib>Porpodas, V.</creatorcontrib><creatorcontrib>Jones, T. M.</creatorcontrib><creatorcontrib>Topham, N. P.</creatorcontrib><creatorcontrib>Franke, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sundararajan, K. T.</au><au>Porpodas, V.</au><au>Jones, T. M.</au><au>Topham, N. P.</au><au>Franke, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs</atitle><btitle>IEEE International Symposium on High-Performance Comp Architecture</btitle><stitle>HPCA</stitle><date>2012-02</date><risdate>2012</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-0897</issn><eissn>2378-203X</eissn><isbn>9781467308274</isbn><isbn>1467308277</isbn><eisbn>9781467308267</eisbn><eisbn>1467308250</eisbn><eisbn>9781467308250</eisbn><eisbn>1467308269</eisbn><abstract>Intelligently partitioning the last-level cache within a chip multiprocessor can bring significant performance improvements. Resources are given to the applications that can benefit most from them, restricting each core to a number of logical cache ways. However, although overall performance is increased, existing schemes fail to consider energy saving when making their partitioning decisions. This paper presents Cooperative Partitioning, a runtime partitioning scheme that reduces both dynamic and static energy while maintaining high performance. It works by enforcing cached data to be way-aligned, so that a way is owned by a single core at any time. Cores cooperate with each other to migrate ways between themselves after partitioning decisions have been made. Upon access to the cache, a core needs only to consult the ways that it owns to find its data, saving dynamic energy. Unused ways can be power-gated for static energy saving. We evaluate our approach on two-core and four-core systems, showing that we obtain average dynamic and static energy savings of 35% and 25% compared to a fixed partitioning scheme. In addition, Cooperative Partitioning maintains high performance while transferring ways five times faster than an existing state-of-the-art technique.</abstract><pub>IEEE</pub><doi>10.1109/HPCA.2012.6169036</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-0897
ispartof IEEE International Symposium on High-Performance Comp Architecture, 2012, p.1-12
issn 1530-0897
2378-203X
language eng
recordid cdi_ieee_primary_6169036
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Hardware
Monitoring
Partitioning algorithms
Registers
Resource management
Vectors
Wireless application protocol
title Cooperative partitioning: Energy-efficient cache partitioning for high-performance CMPs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cooperative%20partitioning:%20Energy-efficient%20cache%20partitioning%20for%20high-performance%20CMPs&rft.btitle=IEEE%20International%20Symposium%20on%20High-Performance%20Comp%20Architecture&rft.au=Sundararajan,%20K.%20T.&rft.date=2012-02&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-0897&rft.eissn=2378-203X&rft.isbn=9781467308274&rft.isbn_list=1467308277&rft_id=info:doi/10.1109/HPCA.2012.6169036&rft_dat=%3Cieee_6IE%3E6169036%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467308267&rft.eisbn_list=1467308250&rft.eisbn_list=9781467308250&rft.eisbn_list=1467308269&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6169036&rfr_iscdi=true