The case for GPGPU spatial multitasking
The set-top and portable device market continues to grow, as does the demand for more performance under increasing cost, power, and thermal constraints. The integration of Graphics Processing Units (GPUs) into these devices and the emergence of general-purpose computations on graphics hardware enabl...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Adriaens, J. T. Compton, K. Nam Sung Kim Schulte, M. J. |
description | The set-top and portable device market continues to grow, as does the demand for more performance under increasing cost, power, and thermal constraints. The integration of Graphics Processing Units (GPUs) into these devices and the emergence of general-purpose computations on graphics hardware enable a new set of highly parallel applications. In this paper, we propose and make the case for a GPU multitasking technique called spatial multitasking. Traditional GPU multitasking techniques, such as cooperative and preemptive multitasking, partition GPU time among applications, while spatial multitasking allows GPU resources to be partitioned among multiple applications simultaneously. We demonstrate the potential benefits of spatial multitasking with an analysis and characterization of General-Purpose GPU (GPGPU) applications. We find that many GPGPU applications fail to utilize available GPU resources fully, which suggests the potential for significant performance benefits using spatial multitasking instead of, or in combination with, preemptive or cooperative multitasking. We then implement spatial multitasking and compare it to cooperative multitasking using simulation. We evaluate several heuristics for partitioning GPU stream multiprocessors (SMs) among applications and find spatial multitasking shows an average speedup of up to 1.19 over cooperative multitasking when two applications are sharing the GPU. Speedups are even higher when more than two applications are sharing the GPU. |
doi_str_mv | 10.1109/HPCA.2012.6168946 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6168946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6168946</ieee_id><sourcerecordid>6168946</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65e333a69600e9097439be897a4684ae893ad9c23fde9eb3ae1b5e35cd2c65bc3</originalsourceid><addsrcrecordid>eNpVTz1PwzAUNF8SUckPQCzZmBJsP-fZHquIpkiVyNBKbJWTvIAhhSoOA_8eS3Thljvd6b3TMXYreCEEtw_rploWkgtZoEBjFZ6x1GojFGrgRqI-Z4kEbXLJ4eXiX6bVJUtECTznxuprlobwziMQbXQTdr99o6xzgbLha8rqpm52WTi62bsxO3yPs59d-PCfrzfsanBjoPTEC7ZbPW6rdb55rp-q5Sb3QpdzjiUBgEOLnJPlViuwLcVmp9AoFxW43nYShp4steBItPGk7HrZYdl2sGB3f389Ee2Pkz-46Wd_mg2_zRdFNA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The case for GPGPU spatial multitasking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Adriaens, J. T. ; Compton, K. ; Nam Sung Kim ; Schulte, M. J.</creator><creatorcontrib>Adriaens, J. T. ; Compton, K. ; Nam Sung Kim ; Schulte, M. J.</creatorcontrib><description>The set-top and portable device market continues to grow, as does the demand for more performance under increasing cost, power, and thermal constraints. The integration of Graphics Processing Units (GPUs) into these devices and the emergence of general-purpose computations on graphics hardware enable a new set of highly parallel applications. In this paper, we propose and make the case for a GPU multitasking technique called spatial multitasking. Traditional GPU multitasking techniques, such as cooperative and preemptive multitasking, partition GPU time among applications, while spatial multitasking allows GPU resources to be partitioned among multiple applications simultaneously. We demonstrate the potential benefits of spatial multitasking with an analysis and characterization of General-Purpose GPU (GPGPU) applications. We find that many GPGPU applications fail to utilize available GPU resources fully, which suggests the potential for significant performance benefits using spatial multitasking instead of, or in combination with, preemptive or cooperative multitasking. We then implement spatial multitasking and compare it to cooperative multitasking using simulation. We evaluate several heuristics for partitioning GPU stream multiprocessors (SMs) among applications and find spatial multitasking shows an average speedup of up to 1.19 over cooperative multitasking when two applications are sharing the GPU. Speedups are even higher when more than two applications are sharing the GPU.</description><identifier>ISSN: 1530-0897</identifier><identifier>ISBN: 9781467308274</identifier><identifier>ISBN: 1467308277</identifier><identifier>EISSN: 2378-203X</identifier><identifier>EISBN: 9781467308267</identifier><identifier>EISBN: 1467308250</identifier><identifier>EISBN: 9781467308250</identifier><identifier>EISBN: 1467308269</identifier><identifier>DOI: 10.1109/HPCA.2012.6168946</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Encoding ; Graphics processing unit ; Instruction sets ; Kernel ; Multitasking ; Transform coding</subject><ispartof>IEEE International Symposium on High-Performance Comp Architecture, 2012, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6168946$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27903,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6168946$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adriaens, J. T.</creatorcontrib><creatorcontrib>Compton, K.</creatorcontrib><creatorcontrib>Nam Sung Kim</creatorcontrib><creatorcontrib>Schulte, M. J.</creatorcontrib><title>The case for GPGPU spatial multitasking</title><title>IEEE International Symposium on High-Performance Comp Architecture</title><addtitle>HPCA</addtitle><description>The set-top and portable device market continues to grow, as does the demand for more performance under increasing cost, power, and thermal constraints. The integration of Graphics Processing Units (GPUs) into these devices and the emergence of general-purpose computations on graphics hardware enable a new set of highly parallel applications. In this paper, we propose and make the case for a GPU multitasking technique called spatial multitasking. Traditional GPU multitasking techniques, such as cooperative and preemptive multitasking, partition GPU time among applications, while spatial multitasking allows GPU resources to be partitioned among multiple applications simultaneously. We demonstrate the potential benefits of spatial multitasking with an analysis and characterization of General-Purpose GPU (GPGPU) applications. We find that many GPGPU applications fail to utilize available GPU resources fully, which suggests the potential for significant performance benefits using spatial multitasking instead of, or in combination with, preemptive or cooperative multitasking. We then implement spatial multitasking and compare it to cooperative multitasking using simulation. We evaluate several heuristics for partitioning GPU stream multiprocessors (SMs) among applications and find spatial multitasking shows an average speedup of up to 1.19 over cooperative multitasking when two applications are sharing the GPU. Speedups are even higher when more than two applications are sharing the GPU.</description><subject>Bandwidth</subject><subject>Encoding</subject><subject>Graphics processing unit</subject><subject>Instruction sets</subject><subject>Kernel</subject><subject>Multitasking</subject><subject>Transform coding</subject><issn>1530-0897</issn><issn>2378-203X</issn><isbn>9781467308274</isbn><isbn>1467308277</isbn><isbn>9781467308267</isbn><isbn>1467308250</isbn><isbn>9781467308250</isbn><isbn>1467308269</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVTz1PwzAUNF8SUckPQCzZmBJsP-fZHquIpkiVyNBKbJWTvIAhhSoOA_8eS3Thljvd6b3TMXYreCEEtw_rploWkgtZoEBjFZ6x1GojFGrgRqI-Z4kEbXLJ4eXiX6bVJUtECTznxuprlobwziMQbXQTdr99o6xzgbLha8rqpm52WTi62bsxO3yPs59d-PCfrzfsanBjoPTEC7ZbPW6rdb55rp-q5Sb3QpdzjiUBgEOLnJPlViuwLcVmp9AoFxW43nYShp4steBItPGk7HrZYdl2sGB3f389Ee2Pkz-46Wd_mg2_zRdFNA</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Adriaens, J. T.</creator><creator>Compton, K.</creator><creator>Nam Sung Kim</creator><creator>Schulte, M. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>The case for GPGPU spatial multitasking</title><author>Adriaens, J. T. ; Compton, K. ; Nam Sung Kim ; Schulte, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65e333a69600e9097439be897a4684ae893ad9c23fde9eb3ae1b5e35cd2c65bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bandwidth</topic><topic>Encoding</topic><topic>Graphics processing unit</topic><topic>Instruction sets</topic><topic>Kernel</topic><topic>Multitasking</topic><topic>Transform coding</topic><toplevel>online_resources</toplevel><creatorcontrib>Adriaens, J. T.</creatorcontrib><creatorcontrib>Compton, K.</creatorcontrib><creatorcontrib>Nam Sung Kim</creatorcontrib><creatorcontrib>Schulte, M. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adriaens, J. T.</au><au>Compton, K.</au><au>Nam Sung Kim</au><au>Schulte, M. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The case for GPGPU spatial multitasking</atitle><btitle>IEEE International Symposium on High-Performance Comp Architecture</btitle><stitle>HPCA</stitle><date>2012-02</date><risdate>2012</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1530-0897</issn><eissn>2378-203X</eissn><isbn>9781467308274</isbn><isbn>1467308277</isbn><eisbn>9781467308267</eisbn><eisbn>1467308250</eisbn><eisbn>9781467308250</eisbn><eisbn>1467308269</eisbn><abstract>The set-top and portable device market continues to grow, as does the demand for more performance under increasing cost, power, and thermal constraints. The integration of Graphics Processing Units (GPUs) into these devices and the emergence of general-purpose computations on graphics hardware enable a new set of highly parallel applications. In this paper, we propose and make the case for a GPU multitasking technique called spatial multitasking. Traditional GPU multitasking techniques, such as cooperative and preemptive multitasking, partition GPU time among applications, while spatial multitasking allows GPU resources to be partitioned among multiple applications simultaneously. We demonstrate the potential benefits of spatial multitasking with an analysis and characterization of General-Purpose GPU (GPGPU) applications. We find that many GPGPU applications fail to utilize available GPU resources fully, which suggests the potential for significant performance benefits using spatial multitasking instead of, or in combination with, preemptive or cooperative multitasking. We then implement spatial multitasking and compare it to cooperative multitasking using simulation. We evaluate several heuristics for partitioning GPU stream multiprocessors (SMs) among applications and find spatial multitasking shows an average speedup of up to 1.19 over cooperative multitasking when two applications are sharing the GPU. Speedups are even higher when more than two applications are sharing the GPU.</abstract><pub>IEEE</pub><doi>10.1109/HPCA.2012.6168946</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-0897 |
ispartof | IEEE International Symposium on High-Performance Comp Architecture, 2012, p.1-12 |
issn | 1530-0897 2378-203X |
language | eng |
recordid | cdi_ieee_primary_6168946 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bandwidth Encoding Graphics processing unit Instruction sets Kernel Multitasking Transform coding |
title | The case for GPGPU spatial multitasking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20case%20for%20GPGPU%20spatial%20multitasking&rft.btitle=IEEE%20International%20Symposium%20on%20High-Performance%20Comp%20Architecture&rft.au=Adriaens,%20J.%20T.&rft.date=2012-02&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1530-0897&rft.eissn=2378-203X&rft.isbn=9781467308274&rft.isbn_list=1467308277&rft_id=info:doi/10.1109/HPCA.2012.6168946&rft_dat=%3Cieee_6IE%3E6168946%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467308267&rft.eisbn_list=1467308250&rft.eisbn_list=9781467308250&rft.eisbn_list=1467308269&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6168946&rfr_iscdi=true |