Research on parameters estimation of acoustic vector array signals using the compressed sensing theory

In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin-Shan Fu, Xiu-Kun Li, Sheng-Qi Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 138
container_title
container_volume
creator Jin-Shan Fu
Xiu-Kun Li
Sheng-Qi Yu
description In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.
doi_str_mv 10.1109/SPAWDA.2011.6167211
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6167211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6167211</ieee_id><sourcerecordid>6167211</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c176144ba77daef7fd62243d9106742b119b9b45fc5c3b1b963d2ca16ebd4ec3</originalsourceid><addsrcrecordid>eNpFkFtLAzEUhCMiqLW_oC_5A133JNnEPC71UqGgeMHHksvZdsXdLEkq7L93wYrzMszHcOAMIQsoC4BSX78-1x-3dcFKgEKCVAzghFyCkIpDqdTN6X-o4JzMU_osJ0mpha4uSPOCCU10exp6OphoOswYE8WU287kdqKhocaFwwQc_UaXQ6QmRjPS1O5685XoIbX9juY9Uhe6IWJK6GnC_g-HOF6Rs2aq4vzoM_J-f_e2Wi83Tw-Pq3qzbEFVeSkcKAlCWKOUN9ioxkvGBPcaSqkEswDaaiuqxlWOW7Bacs-cAYnWC3R8Rha_d1tE3A5x-iGO2-Mu_AeHoVnH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Shan Fu ; Xiu-Kun Li ; Sheng-Qi Yu</creator><creatorcontrib>Jin-Shan Fu ; Xiu-Kun Li ; Sheng-Qi Yu</creatorcontrib><description>In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.</description><identifier>ISBN: 1467310751</identifier><identifier>ISBN: 9781467310758</identifier><identifier>EISBN: 1467310778</identifier><identifier>EISBN: 1467310786</identifier><identifier>EISBN: 9781467310789</identifier><identifier>EISBN: 9781467310772</identifier><identifier>DOI: 10.1109/SPAWDA.2011.6167211</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic measurements ; Acoustics ; Arrays ; compressed sensing ; Direction of arrival estimation ; DOA estimation ; Estimation ; Matching pursuit algorithms ; orthogonal matching pursuit ; over-complete dictionary ; sparse signals ; vector array ; Vectors</subject><ispartof>2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2011, p.138-141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6167211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6167211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Shan Fu</creatorcontrib><creatorcontrib>Xiu-Kun Li</creatorcontrib><creatorcontrib>Sheng-Qi Yu</creatorcontrib><title>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</title><title>2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA)</title><addtitle>SPAWDA</addtitle><description>In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.</description><subject>Acoustic measurements</subject><subject>Acoustics</subject><subject>Arrays</subject><subject>compressed sensing</subject><subject>Direction of arrival estimation</subject><subject>DOA estimation</subject><subject>Estimation</subject><subject>Matching pursuit algorithms</subject><subject>orthogonal matching pursuit</subject><subject>over-complete dictionary</subject><subject>sparse signals</subject><subject>vector array</subject><subject>Vectors</subject><isbn>1467310751</isbn><isbn>9781467310758</isbn><isbn>1467310778</isbn><isbn>1467310786</isbn><isbn>9781467310789</isbn><isbn>9781467310772</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkFtLAzEUhCMiqLW_oC_5A133JNnEPC71UqGgeMHHksvZdsXdLEkq7L93wYrzMszHcOAMIQsoC4BSX78-1x-3dcFKgEKCVAzghFyCkIpDqdTN6X-o4JzMU_osJ0mpha4uSPOCCU10exp6OphoOswYE8WU287kdqKhocaFwwQc_UaXQ6QmRjPS1O5685XoIbX9juY9Uhe6IWJK6GnC_g-HOF6Rs2aq4vzoM_J-f_e2Wi83Tw-Pq3qzbEFVeSkcKAlCWKOUN9ioxkvGBPcaSqkEswDaaiuqxlWOW7Bacs-cAYnWC3R8Rha_d1tE3A5x-iGO2-Mu_AeHoVnH</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Jin-Shan Fu</creator><creator>Xiu-Kun Li</creator><creator>Sheng-Qi Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</title><author>Jin-Shan Fu ; Xiu-Kun Li ; Sheng-Qi Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c176144ba77daef7fd62243d9106742b119b9b45fc5c3b1b963d2ca16ebd4ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic measurements</topic><topic>Acoustics</topic><topic>Arrays</topic><topic>compressed sensing</topic><topic>Direction of arrival estimation</topic><topic>DOA estimation</topic><topic>Estimation</topic><topic>Matching pursuit algorithms</topic><topic>orthogonal matching pursuit</topic><topic>over-complete dictionary</topic><topic>sparse signals</topic><topic>vector array</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Shan Fu</creatorcontrib><creatorcontrib>Xiu-Kun Li</creatorcontrib><creatorcontrib>Sheng-Qi Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Shan Fu</au><au>Xiu-Kun Li</au><au>Sheng-Qi Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</atitle><btitle>2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA)</btitle><stitle>SPAWDA</stitle><date>2011-12</date><risdate>2011</risdate><spage>138</spage><epage>141</epage><pages>138-141</pages><isbn>1467310751</isbn><isbn>9781467310758</isbn><eisbn>1467310778</eisbn><eisbn>1467310786</eisbn><eisbn>9781467310789</eisbn><eisbn>9781467310772</eisbn><abstract>In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.</abstract><pub>IEEE</pub><doi>10.1109/SPAWDA.2011.6167211</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467310751
ispartof 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2011, p.138-141
issn
language eng
recordid cdi_ieee_primary_6167211
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic measurements
Acoustics
Arrays
compressed sensing
Direction of arrival estimation
DOA estimation
Estimation
Matching pursuit algorithms
orthogonal matching pursuit
over-complete dictionary
sparse signals
vector array
Vectors
title Research on parameters estimation of acoustic vector array signals using the compressed sensing theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20parameters%20estimation%20of%20acoustic%20vector%20array%20signals%20using%20the%20compressed%20sensing%20theory&rft.btitle=2011%20Symposium%20on%20Piezoelectricity,%20Acoustic%20Waves%20and%20Device%20Applications%20(SPAWDA)&rft.au=Jin-Shan%20Fu&rft.date=2011-12&rft.spage=138&rft.epage=141&rft.pages=138-141&rft.isbn=1467310751&rft.isbn_list=9781467310758&rft_id=info:doi/10.1109/SPAWDA.2011.6167211&rft_dat=%3Cieee_6IE%3E6167211%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467310778&rft.eisbn_list=1467310786&rft.eisbn_list=9781467310789&rft.eisbn_list=9781467310772&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6167211&rfr_iscdi=true