Research on parameters estimation of acoustic vector array signals using the compressed sensing theory
In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measure...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | |
container_start_page | 138 |
container_title | |
container_volume | |
creator | Jin-Shan Fu Xiu-Kun Li Sheng-Qi Yu |
description | In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots. |
doi_str_mv | 10.1109/SPAWDA.2011.6167211 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6167211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6167211</ieee_id><sourcerecordid>6167211</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c176144ba77daef7fd62243d9106742b119b9b45fc5c3b1b963d2ca16ebd4ec3</originalsourceid><addsrcrecordid>eNpFkFtLAzEUhCMiqLW_oC_5A133JNnEPC71UqGgeMHHksvZdsXdLEkq7L93wYrzMszHcOAMIQsoC4BSX78-1x-3dcFKgEKCVAzghFyCkIpDqdTN6X-o4JzMU_osJ0mpha4uSPOCCU10exp6OphoOswYE8WU287kdqKhocaFwwQc_UaXQ6QmRjPS1O5685XoIbX9juY9Uhe6IWJK6GnC_g-HOF6Rs2aq4vzoM_J-f_e2Wi83Tw-Pq3qzbEFVeSkcKAlCWKOUN9ioxkvGBPcaSqkEswDaaiuqxlWOW7Bacs-cAYnWC3R8Rha_d1tE3A5x-iGO2-Mu_AeHoVnH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jin-Shan Fu ; Xiu-Kun Li ; Sheng-Qi Yu</creator><creatorcontrib>Jin-Shan Fu ; Xiu-Kun Li ; Sheng-Qi Yu</creatorcontrib><description>In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.</description><identifier>ISBN: 1467310751</identifier><identifier>ISBN: 9781467310758</identifier><identifier>EISBN: 1467310778</identifier><identifier>EISBN: 1467310786</identifier><identifier>EISBN: 9781467310789</identifier><identifier>EISBN: 9781467310772</identifier><identifier>DOI: 10.1109/SPAWDA.2011.6167211</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic measurements ; Acoustics ; Arrays ; compressed sensing ; Direction of arrival estimation ; DOA estimation ; Estimation ; Matching pursuit algorithms ; orthogonal matching pursuit ; over-complete dictionary ; sparse signals ; vector array ; Vectors</subject><ispartof>2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2011, p.138-141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6167211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6167211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin-Shan Fu</creatorcontrib><creatorcontrib>Xiu-Kun Li</creatorcontrib><creatorcontrib>Sheng-Qi Yu</creatorcontrib><title>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</title><title>2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA)</title><addtitle>SPAWDA</addtitle><description>In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.</description><subject>Acoustic measurements</subject><subject>Acoustics</subject><subject>Arrays</subject><subject>compressed sensing</subject><subject>Direction of arrival estimation</subject><subject>DOA estimation</subject><subject>Estimation</subject><subject>Matching pursuit algorithms</subject><subject>orthogonal matching pursuit</subject><subject>over-complete dictionary</subject><subject>sparse signals</subject><subject>vector array</subject><subject>Vectors</subject><isbn>1467310751</isbn><isbn>9781467310758</isbn><isbn>1467310778</isbn><isbn>1467310786</isbn><isbn>9781467310789</isbn><isbn>9781467310772</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkFtLAzEUhCMiqLW_oC_5A133JNnEPC71UqGgeMHHksvZdsXdLEkq7L93wYrzMszHcOAMIQsoC4BSX78-1x-3dcFKgEKCVAzghFyCkIpDqdTN6X-o4JzMU_osJ0mpha4uSPOCCU10exp6OphoOswYE8WU287kdqKhocaFwwQc_UaXQ6QmRjPS1O5685XoIbX9juY9Uhe6IWJK6GnC_g-HOF6Rs2aq4vzoM_J-f_e2Wi83Tw-Pq3qzbEFVeSkcKAlCWKOUN9ioxkvGBPcaSqkEswDaaiuqxlWOW7Bacs-cAYnWC3R8Rha_d1tE3A5x-iGO2-Mu_AeHoVnH</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Jin-Shan Fu</creator><creator>Xiu-Kun Li</creator><creator>Sheng-Qi Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</title><author>Jin-Shan Fu ; Xiu-Kun Li ; Sheng-Qi Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c176144ba77daef7fd62243d9106742b119b9b45fc5c3b1b963d2ca16ebd4ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustic measurements</topic><topic>Acoustics</topic><topic>Arrays</topic><topic>compressed sensing</topic><topic>Direction of arrival estimation</topic><topic>DOA estimation</topic><topic>Estimation</topic><topic>Matching pursuit algorithms</topic><topic>orthogonal matching pursuit</topic><topic>over-complete dictionary</topic><topic>sparse signals</topic><topic>vector array</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin-Shan Fu</creatorcontrib><creatorcontrib>Xiu-Kun Li</creatorcontrib><creatorcontrib>Sheng-Qi Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin-Shan Fu</au><au>Xiu-Kun Li</au><au>Sheng-Qi Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Research on parameters estimation of acoustic vector array signals using the compressed sensing theory</atitle><btitle>2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA)</btitle><stitle>SPAWDA</stitle><date>2011-12</date><risdate>2011</risdate><spage>138</spage><epage>141</epage><pages>138-141</pages><isbn>1467310751</isbn><isbn>9781467310758</isbn><eisbn>1467310778</eisbn><eisbn>1467310786</eisbn><eisbn>9781467310789</eisbn><eisbn>9781467310772</eisbn><abstract>In this paper we applied the compressed sensing (CS) theory to signals processing of acoustic vector array, and realized the direction of arrival (DOA) estimation of small number of snapshots data. A new method, called CS, asserts that for sparse or compressible signals, far fewer samples or measurements than traditional methods used can contain all the information of signals. One can recover the original signals accurately from these samples or measurements by using reconstruction algorithms. Herein, we first construct the model of acoustic vector array, and present the corresponding CS algorithm. According to the angle sparse space, the over-complete dictionary can be constructed. The measurement matrix is optimized by the quantum-behaved particle swarm optimization algorithm (QPSO) to decrease the mutual coherence between measurement matrix and over-complete dictionary. An improved orthogonal matching pursuit algorithm (OMP) is used to obtain the estimation of sparse vector. Then from the angle spectrum, the DOA estimation of targets is obtained. By conducting several experiments, we obtained high resolution estimation of targets' DOA on the condition of low signal-to-noise ration (SNR) and small number of snapshots.</abstract><pub>IEEE</pub><doi>10.1109/SPAWDA.2011.6167211</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467310751 |
ispartof | 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2011, p.138-141 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6167211 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic measurements Acoustics Arrays compressed sensing Direction of arrival estimation DOA estimation Estimation Matching pursuit algorithms orthogonal matching pursuit over-complete dictionary sparse signals vector array Vectors |
title | Research on parameters estimation of acoustic vector array signals using the compressed sensing theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Research%20on%20parameters%20estimation%20of%20acoustic%20vector%20array%20signals%20using%20the%20compressed%20sensing%20theory&rft.btitle=2011%20Symposium%20on%20Piezoelectricity,%20Acoustic%20Waves%20and%20Device%20Applications%20(SPAWDA)&rft.au=Jin-Shan%20Fu&rft.date=2011-12&rft.spage=138&rft.epage=141&rft.pages=138-141&rft.isbn=1467310751&rft.isbn_list=9781467310758&rft_id=info:doi/10.1109/SPAWDA.2011.6167211&rft_dat=%3Cieee_6IE%3E6167211%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467310778&rft.eisbn_list=1467310786&rft.eisbn_list=9781467310789&rft.eisbn_list=9781467310772&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6167211&rfr_iscdi=true |