A survey on Short text analysis in Web
With the recent explosive growth of Short text in the Internet and blog-sphere, Short text classification and analysis has been identified as a booming research topic in recent times. Short text classification is a challenge due to its sparse nature, noise words, syntactical structure and colloquial...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | |
container_start_page | 365 |
container_title | |
container_volume | |
creator | Rafeeque, P. C. Sendhilkumar, S. |
description | With the recent explosive growth of Short text in the Internet and blog-sphere, Short text classification and analysis has been identified as a booming research topic in recent times. Short text classification is a challenge due to its sparse nature, noise words, syntactical structure and colloquial terminologies used. It is usually difficult for traditional similarity measures to detect intrinsic relationship among Short text snippets as they contain very limited common words. Although there are several reviews done on Text classification in general, there are no systematic reviews on Short text classification and analysis. This survey discusses the existing works on Short text analysis and the related issues and challenges. The effectiveness of these algorithms have been analysed by using standard analytical measures. |
doi_str_mv | 10.1109/ICoAC.2011.6165203 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6165203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6165203</ieee_id><sourcerecordid>6165203</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1ff93bcedce48e93b298ca93d7805cc8530e494dbd6aa819ee0c6e36c32f46ca3</originalsourceid><addsrcrecordid>eNpVj0FLxDAUhCMquKz9A3rJyVtrXl77khxL0XVhwYOKxyVNX7GyttJUsf_egntxLjPfZYYR4gpUBqDc7bYayirTCiAjoEIrPBGJMxZyMqjIAJ7-Y0VnYqXRmJScNhciifFdLSJtrLIrcVPK-DV-8yyHXj69DeMkJ_6ZpO_9YY5dlF0vX7m-FOetP0ROjr4WL_d3z9VDunvcbKtyl3ZgiimFtnVYB24C55aXqJ0N3mGzjBUh2AIV5y5v6oa8t-CYVSBGCqjbnILHtbj-6-2Yef85dh9-nPfHp_gLHDRD4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A survey on Short text analysis in Web</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rafeeque, P. C. ; Sendhilkumar, S.</creator><creatorcontrib>Rafeeque, P. C. ; Sendhilkumar, S.</creatorcontrib><description>With the recent explosive growth of Short text in the Internet and blog-sphere, Short text classification and analysis has been identified as a booming research topic in recent times. Short text classification is a challenge due to its sparse nature, noise words, syntactical structure and colloquial terminologies used. It is usually difficult for traditional similarity measures to detect intrinsic relationship among Short text snippets as they contain very limited common words. Although there are several reviews done on Text classification in general, there are no systematic reviews on Short text classification and analysis. This survey discusses the existing works on Short text analysis and the related issues and challenges. The effectiveness of these algorithms have been analysed by using standard analytical measures.</description><identifier>ISSN: 2377-6927</identifier><identifier>ISBN: 9781467306706</identifier><identifier>ISBN: 1467306703</identifier><identifier>EISBN: 9781467306713</identifier><identifier>EISBN: 146730669X</identifier><identifier>EISBN: 1467306711</identifier><identifier>EISBN: 9781467306690</identifier><identifier>DOI: 10.1109/ICoAC.2011.6165203</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Clustering ; Encyclopedias ; Internet ; Opinion mining ; Semantics ; Short text ; Text categorization</subject><ispartof>2011 Third International Conference on Advanced Computing, 2011, p.365-371</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6165203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6165203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rafeeque, P. C.</creatorcontrib><creatorcontrib>Sendhilkumar, S.</creatorcontrib><title>A survey on Short text analysis in Web</title><title>2011 Third International Conference on Advanced Computing</title><addtitle>ICoAC</addtitle><description>With the recent explosive growth of Short text in the Internet and blog-sphere, Short text classification and analysis has been identified as a booming research topic in recent times. Short text classification is a challenge due to its sparse nature, noise words, syntactical structure and colloquial terminologies used. It is usually difficult for traditional similarity measures to detect intrinsic relationship among Short text snippets as they contain very limited common words. Although there are several reviews done on Text classification in general, there are no systematic reviews on Short text classification and analysis. This survey discusses the existing works on Short text analysis and the related issues and challenges. The effectiveness of these algorithms have been analysed by using standard analytical measures.</description><subject>Classification</subject><subject>Clustering</subject><subject>Encyclopedias</subject><subject>Internet</subject><subject>Opinion mining</subject><subject>Semantics</subject><subject>Short text</subject><subject>Text categorization</subject><issn>2377-6927</issn><isbn>9781467306706</isbn><isbn>1467306703</isbn><isbn>9781467306713</isbn><isbn>146730669X</isbn><isbn>1467306711</isbn><isbn>9781467306690</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj0FLxDAUhCMquKz9A3rJyVtrXl77khxL0XVhwYOKxyVNX7GyttJUsf_egntxLjPfZYYR4gpUBqDc7bYayirTCiAjoEIrPBGJMxZyMqjIAJ7-Y0VnYqXRmJScNhciifFdLSJtrLIrcVPK-DV-8yyHXj69DeMkJ_6ZpO_9YY5dlF0vX7m-FOetP0ROjr4WL_d3z9VDunvcbKtyl3ZgiimFtnVYB24C55aXqJ0N3mGzjBUh2AIV5y5v6oa8t-CYVSBGCqjbnILHtbj-6-2Yef85dh9-nPfHp_gLHDRD4Q</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Rafeeque, P. C.</creator><creator>Sendhilkumar, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>A survey on Short text analysis in Web</title><author>Rafeeque, P. C. ; Sendhilkumar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1ff93bcedce48e93b298ca93d7805cc8530e494dbd6aa819ee0c6e36c32f46ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Encyclopedias</topic><topic>Internet</topic><topic>Opinion mining</topic><topic>Semantics</topic><topic>Short text</topic><topic>Text categorization</topic><toplevel>online_resources</toplevel><creatorcontrib>Rafeeque, P. C.</creatorcontrib><creatorcontrib>Sendhilkumar, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rafeeque, P. C.</au><au>Sendhilkumar, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A survey on Short text analysis in Web</atitle><btitle>2011 Third International Conference on Advanced Computing</btitle><stitle>ICoAC</stitle><date>2011-12</date><risdate>2011</risdate><spage>365</spage><epage>371</epage><pages>365-371</pages><issn>2377-6927</issn><isbn>9781467306706</isbn><isbn>1467306703</isbn><eisbn>9781467306713</eisbn><eisbn>146730669X</eisbn><eisbn>1467306711</eisbn><eisbn>9781467306690</eisbn><abstract>With the recent explosive growth of Short text in the Internet and blog-sphere, Short text classification and analysis has been identified as a booming research topic in recent times. Short text classification is a challenge due to its sparse nature, noise words, syntactical structure and colloquial terminologies used. It is usually difficult for traditional similarity measures to detect intrinsic relationship among Short text snippets as they contain very limited common words. Although there are several reviews done on Text classification in general, there are no systematic reviews on Short text classification and analysis. This survey discusses the existing works on Short text analysis and the related issues and challenges. The effectiveness of these algorithms have been analysed by using standard analytical measures.</abstract><pub>IEEE</pub><doi>10.1109/ICoAC.2011.6165203</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-6927 |
ispartof | 2011 Third International Conference on Advanced Computing, 2011, p.365-371 |
issn | 2377-6927 |
language | eng |
recordid | cdi_ieee_primary_6165203 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification Clustering Encyclopedias Internet Opinion mining Semantics Short text Text categorization |
title | A survey on Short text analysis in Web |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20survey%20on%20Short%20text%20analysis%20in%20Web&rft.btitle=2011%20Third%20International%20Conference%20on%20Advanced%20Computing&rft.au=Rafeeque,%20P.%20C.&rft.date=2011-12&rft.spage=365&rft.epage=371&rft.pages=365-371&rft.issn=2377-6927&rft.isbn=9781467306706&rft.isbn_list=1467306703&rft_id=info:doi/10.1109/ICoAC.2011.6165203&rft_dat=%3Cieee_6IE%3E6165203%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467306713&rft.eisbn_list=146730669X&rft.eisbn_list=1467306711&rft.eisbn_list=9781467306690&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6165203&rfr_iscdi=true |