Low-level feature selection for emotional music preferences based on subjective audience rating

Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jonghyung Lee, Min-Uk Kim, Kyoungro Yoon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 73
container_title
container_volume
creator Jonghyung Lee
Min-Uk Kim
Kyoungro Yoon
description Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.
doi_str_mv 10.1109/ICCE.2012.6161746
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6161746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6161746</ieee_id><sourcerecordid>6161746</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f394e7653e2d2ffdbf0cabe0a027cc5a0cb2fbe99ca5932ae9ea5521361e07fa3</originalsourceid><addsrcrecordid>eNo1kMtuwjAQRd0HUinlA6pu_AOh4zdeVhG0SEjdsEcTZ1wZBYLihKp_X1Dp3cyVzplZDGPPAmZCgH9dleViJkHImRVWOG1v2KPQxjmQSshbNpbCzAsNIO7Y1Lv5PwN1f2XKez1i47kurFZCuwc2zXkH51jrz-aYbdftd9HQiRoeCfuhI56podCn9sBj23Hat5eODd8POQV-7ChSR4dAmVeYqeZnMQ_V7rJzIo5DnS6Ud9inw9cTG0VsMk2vc8I2y8Wm_CjWn--r8m1dJA99EZXX5KxRJGsZY11FCFgRIEgXgkEIlYwVeR_QeCWRPKExUigrCFxENWEvf2cTEW2PXdpj97O9vk39Ao12XPc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-level feature selection for emotional music preferences based on subjective audience rating</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jonghyung Lee ; Min-Uk Kim ; Kyoungro Yoon</creator><creatorcontrib>Jonghyung Lee ; Min-Uk Kim ; Kyoungro Yoon</creatorcontrib><description>Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.</description><identifier>ISSN: 2158-3994</identifier><identifier>ISBN: 9781457702303</identifier><identifier>ISBN: 1457702304</identifier><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 1457702312</identifier><identifier>EISBN: 9781457702297</identifier><identifier>EISBN: 1457702290</identifier><identifier>EISBN: 9781457702310</identifier><identifier>DOI: 10.1109/ICCE.2012.6161746</identifier><identifier>LCCN: 84-643147</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Estimation ; Feature extraction ; Humans ; Music</subject><ispartof>2012 IEEE International Conference on Consumer Electronics (ICCE), 2012, p.73-74</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6161746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6161746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jonghyung Lee</creatorcontrib><creatorcontrib>Min-Uk Kim</creatorcontrib><creatorcontrib>Kyoungro Yoon</creatorcontrib><title>Low-level feature selection for emotional music preferences based on subjective audience rating</title><title>2012 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.</description><subject>Correlation</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Music</subject><issn>2158-3994</issn><issn>2158-4001</issn><isbn>9781457702303</isbn><isbn>1457702304</isbn><isbn>1457702312</isbn><isbn>9781457702297</isbn><isbn>1457702290</isbn><isbn>9781457702310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtuwjAQRd0HUinlA6pu_AOh4zdeVhG0SEjdsEcTZ1wZBYLihKp_X1Dp3cyVzplZDGPPAmZCgH9dleViJkHImRVWOG1v2KPQxjmQSshbNpbCzAsNIO7Y1Lv5PwN1f2XKez1i47kurFZCuwc2zXkH51jrz-aYbdftd9HQiRoeCfuhI56podCn9sBj23Hat5eODd8POQV-7ChSR4dAmVeYqeZnMQ_V7rJzIo5DnS6Ud9inw9cTG0VsMk2vc8I2y8Wm_CjWn--r8m1dJA99EZXX5KxRJGsZY11FCFgRIEgXgkEIlYwVeR_QeCWRPKExUigrCFxENWEvf2cTEW2PXdpj97O9vk39Ao12XPc</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Jonghyung Lee</creator><creator>Min-Uk Kim</creator><creator>Kyoungro Yoon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201201</creationdate><title>Low-level feature selection for emotional music preferences based on subjective audience rating</title><author>Jonghyung Lee ; Min-Uk Kim ; Kyoungro Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f394e7653e2d2ffdbf0cabe0a027cc5a0cb2fbe99ca5932ae9ea5521361e07fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Music</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonghyung Lee</creatorcontrib><creatorcontrib>Min-Uk Kim</creatorcontrib><creatorcontrib>Kyoungro Yoon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jonghyung Lee</au><au>Min-Uk Kim</au><au>Kyoungro Yoon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-level feature selection for emotional music preferences based on subjective audience rating</atitle><btitle>2012 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2012-01</date><risdate>2012</risdate><spage>73</spage><epage>74</epage><pages>73-74</pages><issn>2158-3994</issn><eissn>2158-4001</eissn><isbn>9781457702303</isbn><isbn>1457702304</isbn><eisbn>1457702312</eisbn><eisbn>9781457702297</eisbn><eisbn>1457702290</eisbn><eisbn>9781457702310</eisbn><abstract>Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2012.6161746</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-3994
ispartof 2012 IEEE International Conference on Consumer Electronics (ICCE), 2012, p.73-74
issn 2158-3994
2158-4001
language eng
recordid cdi_ieee_primary_6161746
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Correlation
Estimation
Feature extraction
Humans
Music
title Low-level feature selection for emotional music preferences based on subjective audience rating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-level%20feature%20selection%20for%20emotional%20music%20preferences%20based%20on%20subjective%20audience%20rating&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Jonghyung%20Lee&rft.date=2012-01&rft.spage=73&rft.epage=74&rft.pages=73-74&rft.issn=2158-3994&rft.eissn=2158-4001&rft.isbn=9781457702303&rft.isbn_list=1457702304&rft_id=info:doi/10.1109/ICCE.2012.6161746&rft_dat=%3Cieee_6IE%3E6161746%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702312&rft.eisbn_list=9781457702297&rft.eisbn_list=1457702290&rft.eisbn_list=9781457702310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6161746&rfr_iscdi=true