Low-level feature selection for emotional music preferences based on subjective audience rating
Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger huma...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | |
container_volume | |
creator | Jonghyung Lee Min-Uk Kim Kyoungro Yoon |
description | Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively. |
doi_str_mv | 10.1109/ICCE.2012.6161746 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6161746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6161746</ieee_id><sourcerecordid>6161746</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f394e7653e2d2ffdbf0cabe0a027cc5a0cb2fbe99ca5932ae9ea5521361e07fa3</originalsourceid><addsrcrecordid>eNo1kMtuwjAQRd0HUinlA6pu_AOh4zdeVhG0SEjdsEcTZ1wZBYLihKp_X1Dp3cyVzplZDGPPAmZCgH9dleViJkHImRVWOG1v2KPQxjmQSshbNpbCzAsNIO7Y1Lv5PwN1f2XKez1i47kurFZCuwc2zXkH51jrz-aYbdftd9HQiRoeCfuhI56podCn9sBj23Hat5eODd8POQV-7ChSR4dAmVeYqeZnMQ_V7rJzIo5DnS6Ud9inw9cTG0VsMk2vc8I2y8Wm_CjWn--r8m1dJA99EZXX5KxRJGsZY11FCFgRIEgXgkEIlYwVeR_QeCWRPKExUigrCFxENWEvf2cTEW2PXdpj97O9vk39Ao12XPc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-level feature selection for emotional music preferences based on subjective audience rating</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jonghyung Lee ; Min-Uk Kim ; Kyoungro Yoon</creator><creatorcontrib>Jonghyung Lee ; Min-Uk Kim ; Kyoungro Yoon</creatorcontrib><description>Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.</description><identifier>ISSN: 2158-3994</identifier><identifier>ISBN: 9781457702303</identifier><identifier>ISBN: 1457702304</identifier><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 1457702312</identifier><identifier>EISBN: 9781457702297</identifier><identifier>EISBN: 1457702290</identifier><identifier>EISBN: 9781457702310</identifier><identifier>DOI: 10.1109/ICCE.2012.6161746</identifier><identifier>LCCN: 84-643147</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; Estimation ; Feature extraction ; Humans ; Music</subject><ispartof>2012 IEEE International Conference on Consumer Electronics (ICCE), 2012, p.73-74</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6161746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6161746$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jonghyung Lee</creatorcontrib><creatorcontrib>Min-Uk Kim</creatorcontrib><creatorcontrib>Kyoungro Yoon</creatorcontrib><title>Low-level feature selection for emotional music preferences based on subjective audience rating</title><title>2012 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.</description><subject>Correlation</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Music</subject><issn>2158-3994</issn><issn>2158-4001</issn><isbn>9781457702303</isbn><isbn>1457702304</isbn><isbn>1457702312</isbn><isbn>9781457702297</isbn><isbn>1457702290</isbn><isbn>9781457702310</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtuwjAQRd0HUinlA6pu_AOh4zdeVhG0SEjdsEcTZ1wZBYLihKp_X1Dp3cyVzplZDGPPAmZCgH9dleViJkHImRVWOG1v2KPQxjmQSshbNpbCzAsNIO7Y1Lv5PwN1f2XKez1i47kurFZCuwc2zXkH51jrz-aYbdftd9HQiRoeCfuhI56podCn9sBj23Hat5eODd8POQV-7ChSR4dAmVeYqeZnMQ_V7rJzIo5DnS6Ud9inw9cTG0VsMk2vc8I2y8Wm_CjWn--r8m1dJA99EZXX5KxRJGsZY11FCFgRIEgXgkEIlYwVeR_QeCWRPKExUigrCFxENWEvf2cTEW2PXdpj97O9vk39Ao12XPc</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Jonghyung Lee</creator><creator>Min-Uk Kim</creator><creator>Kyoungro Yoon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201201</creationdate><title>Low-level feature selection for emotional music preferences based on subjective audience rating</title><author>Jonghyung Lee ; Min-Uk Kim ; Kyoungro Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f394e7653e2d2ffdbf0cabe0a027cc5a0cb2fbe99ca5932ae9ea5521361e07fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Music</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonghyung Lee</creatorcontrib><creatorcontrib>Min-Uk Kim</creatorcontrib><creatorcontrib>Kyoungro Yoon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jonghyung Lee</au><au>Min-Uk Kim</au><au>Kyoungro Yoon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-level feature selection for emotional music preferences based on subjective audience rating</atitle><btitle>2012 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2012-01</date><risdate>2012</risdate><spage>73</spage><epage>74</epage><pages>73-74</pages><issn>2158-3994</issn><eissn>2158-4001</eissn><isbn>9781457702303</isbn><isbn>1457702304</isbn><eisbn>1457702312</eisbn><eisbn>9781457702297</eisbn><eisbn>1457702290</eisbn><eisbn>9781457702310</eisbn><abstract>Recently, many researches of modeling or measuring human feeling have been conducted to understand human emotions. However, researches on music-related human emotions have much difficulty due to the subjective perception of emotions. We have selected low-level musical features which may trigger human emotions, based on subjective audience ratings. This experiment is based on the subjective audience ratings of five hundred participants in a very popular Korean TV music program. In this program, audience is requested to rate music of the contestants and to select their preferred music based on their emotional feelings. The most relevant low-level features with respect to human emotions are selected by backward elimination method and experimental results show that selected low-level features touch human emotions quite positively.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2012.6161746</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-3994 |
ispartof | 2012 IEEE International Conference on Consumer Electronics (ICCE), 2012, p.73-74 |
issn | 2158-3994 2158-4001 |
language | eng |
recordid | cdi_ieee_primary_6161746 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Correlation Estimation Feature extraction Humans Music |
title | Low-level feature selection for emotional music preferences based on subjective audience rating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-level%20feature%20selection%20for%20emotional%20music%20preferences%20based%20on%20subjective%20audience%20rating&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Jonghyung%20Lee&rft.date=2012-01&rft.spage=73&rft.epage=74&rft.pages=73-74&rft.issn=2158-3994&rft.eissn=2158-4001&rft.isbn=9781457702303&rft.isbn_list=1457702304&rft_id=info:doi/10.1109/ICCE.2012.6161746&rft_dat=%3Cieee_6IE%3E6161746%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457702312&rft.eisbn_list=9781457702297&rft.eisbn_list=1457702290&rft.eisbn_list=9781457702310&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6161746&rfr_iscdi=true |