Alternative characterization of ergodicity for doubly stochastic chains

In this paper we discuss the ergodicity of stochastic and doubly stochastic chains. We define absolute infinite flow property and show that this property is necessary for ergodicity of any stochastic chain. The proof is constructive and makes use of a rotational transformation, which we introduce an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Touri, B., Nedic, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5376
container_issue
container_start_page 5371
container_title
container_volume
creator Touri, B.
Nedic, A.
description In this paper we discuss the ergodicity of stochastic and doubly stochastic chains. We define absolute infinite flow property and show that this property is necessary for ergodicity of any stochastic chain. The proof is constructive and makes use of a rotational transformation, which we introduce and study. We then focus on doubly stochastic chains for which we prove that the absolute infinite flow property and ergodicity are equivalent. The proof of this result makes use of a special decomposition of a doubly stochastic matrix, as given by Birkhoff-von Neumann theorem. Finally, we show that a backward product of doubly stochastic matrices is convergent up to a permutation sequence and, as a result, the set of accumulation points of such a product is finite.
doi_str_mv 10.1109/CDC.2011.6161372
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6161372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6161372</ieee_id><sourcerecordid>6161372</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-b451184f0e44da8b7ee4b91176948f48f7062af233c13dda16ceaf0ef072c3b43</originalsourceid><addsrcrecordid>eNotUM9LwzAUjqjgNncXvPQfaH0vyZL0OKpOYeBFzyNNE43URpIo1L_eiIMHH9_PwyPkCqFBhPamu-0aCoiNQIFM0hOyRC4kA76R7JSsW6mKQRVXAOKMLABbrClFcUGWKb0DgAIhFmS3HbONk87-21bmTUdtCvc_RQhTFVxl42sYvPF5rlyI1RC--nGuUg4lnLI3fyU_pUty7vSY7PqIK_Jyf_fcPdT7p91jt93XnqLMdc83iIo7sJwPWvXSWt63iFK0XLlyEgTVjjJmkA2DRmGsLmkHkhrWc7Yi1_-73lp7-Iz-Q8f5cHwC-wXI0k7M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Alternative characterization of ergodicity for doubly stochastic chains</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Touri, B. ; Nedic, A.</creator><creatorcontrib>Touri, B. ; Nedic, A.</creatorcontrib><description>In this paper we discuss the ergodicity of stochastic and doubly stochastic chains. We define absolute infinite flow property and show that this property is necessary for ergodicity of any stochastic chain. The proof is constructive and makes use of a rotational transformation, which we introduce and study. We then focus on doubly stochastic chains for which we prove that the absolute infinite flow property and ergodicity are equivalent. The proof of this result makes use of a special decomposition of a doubly stochastic matrix, as given by Birkhoff-von Neumann theorem. Finally, we show that a backward product of doubly stochastic matrices is convergent up to a permutation sequence and, as a result, the set of accumulation points of such a product is finite.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781612848006</identifier><identifier>ISBN: 1612848001</identifier><identifier>EISBN: 1467304573</identifier><identifier>EISBN: 1612847994</identifier><identifier>EISBN: 9781612847993</identifier><identifier>EISBN: 161284801X</identifier><identifier>EISBN: 9781612848013</identifier><identifier>EISBN: 9781467304573</identifier><identifier>DOI: 10.1109/CDC.2011.6161372</identifier><language>eng</language><publisher>IEEE</publisher><subject>Concrete ; Markov processes ; Matrix decomposition ; Nonhomogeneous media ; Trajectory ; Vectors</subject><ispartof>2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, p.5371-5376</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6161372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6161372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Touri, B.</creatorcontrib><creatorcontrib>Nedic, A.</creatorcontrib><title>Alternative characterization of ergodicity for doubly stochastic chains</title><title>2011 50th IEEE Conference on Decision and Control and European Control Conference</title><addtitle>CDC</addtitle><description>In this paper we discuss the ergodicity of stochastic and doubly stochastic chains. We define absolute infinite flow property and show that this property is necessary for ergodicity of any stochastic chain. The proof is constructive and makes use of a rotational transformation, which we introduce and study. We then focus on doubly stochastic chains for which we prove that the absolute infinite flow property and ergodicity are equivalent. The proof of this result makes use of a special decomposition of a doubly stochastic matrix, as given by Birkhoff-von Neumann theorem. Finally, we show that a backward product of doubly stochastic matrices is convergent up to a permutation sequence and, as a result, the set of accumulation points of such a product is finite.</description><subject>Concrete</subject><subject>Markov processes</subject><subject>Matrix decomposition</subject><subject>Nonhomogeneous media</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>9781612848006</isbn><isbn>1612848001</isbn><isbn>1467304573</isbn><isbn>1612847994</isbn><isbn>9781612847993</isbn><isbn>161284801X</isbn><isbn>9781612848013</isbn><isbn>9781467304573</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUM9LwzAUjqjgNncXvPQfaH0vyZL0OKpOYeBFzyNNE43URpIo1L_eiIMHH9_PwyPkCqFBhPamu-0aCoiNQIFM0hOyRC4kA76R7JSsW6mKQRVXAOKMLABbrClFcUGWKb0DgAIhFmS3HbONk87-21bmTUdtCvc_RQhTFVxl42sYvPF5rlyI1RC--nGuUg4lnLI3fyU_pUty7vSY7PqIK_Jyf_fcPdT7p91jt93XnqLMdc83iIo7sJwPWvXSWt63iFK0XLlyEgTVjjJmkA2DRmGsLmkHkhrWc7Yi1_-73lp7-Iz-Q8f5cHwC-wXI0k7M</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Touri, B.</creator><creator>Nedic, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201112</creationdate><title>Alternative characterization of ergodicity for doubly stochastic chains</title><author>Touri, B. ; Nedic, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-b451184f0e44da8b7ee4b91176948f48f7062af233c13dda16ceaf0ef072c3b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Concrete</topic><topic>Markov processes</topic><topic>Matrix decomposition</topic><topic>Nonhomogeneous media</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Touri, B.</creatorcontrib><creatorcontrib>Nedic, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Touri, B.</au><au>Nedic, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Alternative characterization of ergodicity for doubly stochastic chains</atitle><btitle>2011 50th IEEE Conference on Decision and Control and European Control Conference</btitle><stitle>CDC</stitle><date>2011-12</date><risdate>2011</risdate><spage>5371</spage><epage>5376</epage><pages>5371-5376</pages><issn>0191-2216</issn><isbn>9781612848006</isbn><isbn>1612848001</isbn><eisbn>1467304573</eisbn><eisbn>1612847994</eisbn><eisbn>9781612847993</eisbn><eisbn>161284801X</eisbn><eisbn>9781612848013</eisbn><eisbn>9781467304573</eisbn><abstract>In this paper we discuss the ergodicity of stochastic and doubly stochastic chains. We define absolute infinite flow property and show that this property is necessary for ergodicity of any stochastic chain. The proof is constructive and makes use of a rotational transformation, which we introduce and study. We then focus on doubly stochastic chains for which we prove that the absolute infinite flow property and ergodicity are equivalent. The proof of this result makes use of a special decomposition of a doubly stochastic matrix, as given by Birkhoff-von Neumann theorem. Finally, we show that a backward product of doubly stochastic matrices is convergent up to a permutation sequence and, as a result, the set of accumulation points of such a product is finite.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2011.6161372</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, p.5371-5376
issn 0191-2216
language eng
recordid cdi_ieee_primary_6161372
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Concrete
Markov processes
Matrix decomposition
Nonhomogeneous media
Trajectory
Vectors
title Alternative characterization of ergodicity for doubly stochastic chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Alternative%20characterization%20of%20ergodicity%20for%20doubly%20stochastic%20chains&rft.btitle=2011%2050th%20IEEE%20Conference%20on%20Decision%20and%20Control%20and%20European%20Control%20Conference&rft.au=Touri,%20B.&rft.date=2011-12&rft.spage=5371&rft.epage=5376&rft.pages=5371-5376&rft.issn=0191-2216&rft.isbn=9781612848006&rft.isbn_list=1612848001&rft_id=info:doi/10.1109/CDC.2011.6161372&rft_dat=%3Cieee_6IE%3E6161372%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467304573&rft.eisbn_list=1612847994&rft.eisbn_list=9781612847993&rft.eisbn_list=161284801X&rft.eisbn_list=9781612848013&rft.eisbn_list=9781467304573&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6161372&rfr_iscdi=true