A hybird learning model for on-line prediction in hot skip-passing using neural networks

This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dingchun Xia, Xiaozhen Qin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue
container_start_page 377
container_title
container_volume
creator Dingchun Xia
Xiaozhen Qin
description This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.
doi_str_mv 10.1109/IWACI.2011.6160035
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6160035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6160035</ieee_id><sourcerecordid>6160035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ce910e91069368f846a1b6cd6689f88450294b119e039b2d5f9b23b87c15464d3</originalsourceid><addsrcrecordid>eNpFUM1KxDAYjIigrvsCeskLtOZr0q_JsRR_CgteFvS2tE3qxu0mJeki-_Z2dcGBmWEOM4ch5B5YCsDUY_1eVnWaMYAUARnj-QW5BYRMCl7kcPkfBL8myxi_2AzMCsnwhnyUdHtsbdB0ME1w1n3SvddmoL0P1LtksM7QMRhtu8l6R62jWz_RuLNjMjYxngqHX3XmEJphtunbh128I1d9M0SzPPuCrJ-f1tVrsnp7qatylVjFpqQzCtiJqDjKXgpsoMVOI0rVSylylinRAijDuGoznfez8lYWHeQCheYL8vA3a40xmzHYfROOm_MR_AdLYFGf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybird learning model for on-line prediction in hot skip-passing using neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dingchun Xia ; Xiaozhen Qin</creator><creatorcontrib>Dingchun Xia ; Xiaozhen Qin</creatorcontrib><description>This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.</description><identifier>ISBN: 1612843743</identifier><identifier>ISBN: 9781612843742</identifier><identifier>EISBN: 1612843751</identifier><identifier>EISBN: 9781612843735</identifier><identifier>EISBN: 1612843735</identifier><identifier>EISBN: 9781612843759</identifier><identifier>DOI: 10.1109/IWACI.2011.6160035</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Heuristic algorithms ; Mathematical model ; Process control ; Strips</subject><ispartof>The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.377-380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6160035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6160035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dingchun Xia</creatorcontrib><creatorcontrib>Xiaozhen Qin</creatorcontrib><title>A hybird learning model for on-line prediction in hot skip-passing using neural networks</title><title>The Fourth International Workshop on Advanced Computational Intelligence</title><addtitle>IWACI</addtitle><description>This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Heuristic algorithms</subject><subject>Mathematical model</subject><subject>Process control</subject><subject>Strips</subject><isbn>1612843743</isbn><isbn>9781612843742</isbn><isbn>1612843751</isbn><isbn>9781612843735</isbn><isbn>1612843735</isbn><isbn>9781612843759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1KxDAYjIigrvsCeskLtOZr0q_JsRR_CgteFvS2tE3qxu0mJeki-_Z2dcGBmWEOM4ch5B5YCsDUY_1eVnWaMYAUARnj-QW5BYRMCl7kcPkfBL8myxi_2AzMCsnwhnyUdHtsbdB0ME1w1n3SvddmoL0P1LtksM7QMRhtu8l6R62jWz_RuLNjMjYxngqHX3XmEJphtunbh128I1d9M0SzPPuCrJ-f1tVrsnp7qatylVjFpqQzCtiJqDjKXgpsoMVOI0rVSylylinRAijDuGoznfez8lYWHeQCheYL8vA3a40xmzHYfROOm_MR_AdLYFGf</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Dingchun Xia</creator><creator>Xiaozhen Qin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>A hybird learning model for on-line prediction in hot skip-passing using neural networks</title><author>Dingchun Xia ; Xiaozhen Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ce910e91069368f846a1b6cd6689f88450294b119e039b2d5f9b23b87c15464d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Heuristic algorithms</topic><topic>Mathematical model</topic><topic>Process control</topic><topic>Strips</topic><toplevel>online_resources</toplevel><creatorcontrib>Dingchun Xia</creatorcontrib><creatorcontrib>Xiaozhen Qin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dingchun Xia</au><au>Xiaozhen Qin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybird learning model for on-line prediction in hot skip-passing using neural networks</atitle><btitle>The Fourth International Workshop on Advanced Computational Intelligence</btitle><stitle>IWACI</stitle><date>2011-10</date><risdate>2011</risdate><spage>377</spage><epage>380</epage><pages>377-380</pages><isbn>1612843743</isbn><isbn>9781612843742</isbn><eisbn>1612843751</eisbn><eisbn>9781612843735</eisbn><eisbn>1612843735</eisbn><eisbn>9781612843759</eisbn><abstract>This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.</abstract><pub>IEEE</pub><doi>10.1109/IWACI.2011.6160035</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612843743
ispartof The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.377-380
issn
language eng
recordid cdi_ieee_primary_6160035
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Computational modeling
Heuristic algorithms
Mathematical model
Process control
Strips
title A hybird learning model for on-line prediction in hot skip-passing using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T12%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybird%20learning%20model%20for%20on-line%20prediction%20in%20hot%20skip-passing%20using%20neural%20networks&rft.btitle=The%20Fourth%20International%20Workshop%20on%20Advanced%20Computational%20Intelligence&rft.au=Dingchun%20Xia&rft.date=2011-10&rft.spage=377&rft.epage=380&rft.pages=377-380&rft.isbn=1612843743&rft.isbn_list=9781612843742&rft_id=info:doi/10.1109/IWACI.2011.6160035&rft_dat=%3Cieee_6IE%3E6160035%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843751&rft.eisbn_list=9781612843735&rft.eisbn_list=1612843735&rft.eisbn_list=9781612843759&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6160035&rfr_iscdi=true