A hybird learning model for on-line prediction in hot skip-passing using neural networks
This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effe...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | |
container_start_page | 377 |
container_title | |
container_volume | |
creator | Dingchun Xia Xiaozhen Qin |
description | This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed. |
doi_str_mv | 10.1109/IWACI.2011.6160035 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6160035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6160035</ieee_id><sourcerecordid>6160035</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ce910e91069368f846a1b6cd6689f88450294b119e039b2d5f9b23b87c15464d3</originalsourceid><addsrcrecordid>eNpFUM1KxDAYjIigrvsCeskLtOZr0q_JsRR_CgteFvS2tE3qxu0mJeki-_Z2dcGBmWEOM4ch5B5YCsDUY_1eVnWaMYAUARnj-QW5BYRMCl7kcPkfBL8myxi_2AzMCsnwhnyUdHtsbdB0ME1w1n3SvddmoL0P1LtksM7QMRhtu8l6R62jWz_RuLNjMjYxngqHX3XmEJphtunbh128I1d9M0SzPPuCrJ-f1tVrsnp7qatylVjFpqQzCtiJqDjKXgpsoMVOI0rVSylylinRAijDuGoznfez8lYWHeQCheYL8vA3a40xmzHYfROOm_MR_AdLYFGf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybird learning model for on-line prediction in hot skip-passing using neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dingchun Xia ; Xiaozhen Qin</creator><creatorcontrib>Dingchun Xia ; Xiaozhen Qin</creatorcontrib><description>This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.</description><identifier>ISBN: 1612843743</identifier><identifier>ISBN: 9781612843742</identifier><identifier>EISBN: 1612843751</identifier><identifier>EISBN: 9781612843735</identifier><identifier>EISBN: 1612843735</identifier><identifier>EISBN: 9781612843759</identifier><identifier>DOI: 10.1109/IWACI.2011.6160035</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Heuristic algorithms ; Mathematical model ; Process control ; Strips</subject><ispartof>The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.377-380</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6160035$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6160035$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dingchun Xia</creatorcontrib><creatorcontrib>Xiaozhen Qin</creatorcontrib><title>A hybird learning model for on-line prediction in hot skip-passing using neural networks</title><title>The Fourth International Workshop on Advanced Computational Intelligence</title><addtitle>IWACI</addtitle><description>This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Heuristic algorithms</subject><subject>Mathematical model</subject><subject>Process control</subject><subject>Strips</subject><isbn>1612843743</isbn><isbn>9781612843742</isbn><isbn>1612843751</isbn><isbn>9781612843735</isbn><isbn>1612843735</isbn><isbn>9781612843759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUM1KxDAYjIigrvsCeskLtOZr0q_JsRR_CgteFvS2tE3qxu0mJeki-_Z2dcGBmWEOM4ch5B5YCsDUY_1eVnWaMYAUARnj-QW5BYRMCl7kcPkfBL8myxi_2AzMCsnwhnyUdHtsbdB0ME1w1n3SvddmoL0P1LtksM7QMRhtu8l6R62jWz_RuLNjMjYxngqHX3XmEJphtunbh128I1d9M0SzPPuCrJ-f1tVrsnp7qatylVjFpqQzCtiJqDjKXgpsoMVOI0rVSylylinRAijDuGoznfez8lYWHeQCheYL8vA3a40xmzHYfROOm_MR_AdLYFGf</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Dingchun Xia</creator><creator>Xiaozhen Qin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>A hybird learning model for on-line prediction in hot skip-passing using neural networks</title><author>Dingchun Xia ; Xiaozhen Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ce910e91069368f846a1b6cd6689f88450294b119e039b2d5f9b23b87c15464d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Heuristic algorithms</topic><topic>Mathematical model</topic><topic>Process control</topic><topic>Strips</topic><toplevel>online_resources</toplevel><creatorcontrib>Dingchun Xia</creatorcontrib><creatorcontrib>Xiaozhen Qin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dingchun Xia</au><au>Xiaozhen Qin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybird learning model for on-line prediction in hot skip-passing using neural networks</atitle><btitle>The Fourth International Workshop on Advanced Computational Intelligence</btitle><stitle>IWACI</stitle><date>2011-10</date><risdate>2011</risdate><spage>377</spage><epage>380</epage><pages>377-380</pages><isbn>1612843743</isbn><isbn>9781612843742</isbn><eisbn>1612843751</eisbn><eisbn>9781612843735</eisbn><eisbn>1612843735</eisbn><eisbn>9781612843759</eisbn><abstract>This paper presents a hybrid learning approach for dynamic system modelling and prediction using neural networks. The model learning is divided into two parts. One is to select the global region and the other is to find the goal value. A heuristic learning algorithm (HLA) is discussed, which is effective in the real-time dynamic modelling and control. The hybrid model is applied to the on-line prediction of the rolling strip in the hot skip-pass process. The control system is introduced and the result is discussed.</abstract><pub>IEEE</pub><doi>10.1109/IWACI.2011.6160035</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612843743 |
ispartof | The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.377-380 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6160035 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Computational modeling Heuristic algorithms Mathematical model Process control Strips |
title | A hybird learning model for on-line prediction in hot skip-passing using neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T12%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybird%20learning%20model%20for%20on-line%20prediction%20in%20hot%20skip-passing%20using%20neural%20networks&rft.btitle=The%20Fourth%20International%20Workshop%20on%20Advanced%20Computational%20Intelligence&rft.au=Dingchun%20Xia&rft.date=2011-10&rft.spage=377&rft.epage=380&rft.pages=377-380&rft.isbn=1612843743&rft.isbn_list=9781612843742&rft_id=info:doi/10.1109/IWACI.2011.6160035&rft_dat=%3Cieee_6IE%3E6160035%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843751&rft.eisbn_list=9781612843735&rft.eisbn_list=1612843735&rft.eisbn_list=9781612843759&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6160035&rfr_iscdi=true |