Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model
For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | |
container_start_page | 274 |
container_title | |
container_volume | |
creator | Lianfang Cai Xuemin Tian |
description | For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches. |
doi_str_mv | 10.1109/IWACI.2011.6160016 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6160016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6160016</ieee_id><sourcerecordid>6160016</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a52df77699dfbaab7bd71f6bfe48e7f78c3075c32abe78910b05fc0f433579643</originalsourceid><addsrcrecordid>eNpFUE9LwzAcjYigzn0BveQLdP7StElzHEVnYcPLwJOMpPkFI21Smk7ct7fiwHd4fw7vHR4h9wxWjIF6bN7WdbPKgbGVYAKAiQtyywTLq4LLkl3-h4Jfk2VKnzBD5LICcUPem34Y4xdaOsQ0ZSGGzgfUI_XB4oAzhYm2sR9i-HU66O6UfKI9Th_RUqPTXI2BbvQxJa8D3fnv6Tgi3UWL3R25crpLuDzrguyfn_b1S7Z93TT1ept5BVOmy9w6KYVS1hmtjTRWMieMw6JC6WTVcpBly3NtUFaKgYHSteAKzkupRMEX5OFv1iPiYRh9r8fT4fwG_wFa1lWl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lianfang Cai ; Xuemin Tian</creator><creatorcontrib>Lianfang Cai ; Xuemin Tian</creatorcontrib><description>For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.</description><identifier>ISBN: 1612843743</identifier><identifier>ISBN: 9781612843742</identifier><identifier>EISBN: 1612843751</identifier><identifier>EISBN: 9781612843735</identifier><identifier>EISBN: 1612843735</identifier><identifier>EISBN: 9781612843759</identifier><identifier>DOI: 10.1109/IWACI.2011.6160016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blind source separation ; Correlation ; Entropy ; Estimation ; Joints ; Vectors</subject><ispartof>The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.274-279</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6160016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6160016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lianfang Cai</creatorcontrib><creatorcontrib>Xuemin Tian</creatorcontrib><title>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</title><title>The Fourth International Workshop on Advanced Computational Intelligence</title><addtitle>IWACI</addtitle><description>For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.</description><subject>Blind source separation</subject><subject>Correlation</subject><subject>Entropy</subject><subject>Estimation</subject><subject>Joints</subject><subject>Vectors</subject><isbn>1612843743</isbn><isbn>9781612843742</isbn><isbn>1612843751</isbn><isbn>9781612843735</isbn><isbn>1612843735</isbn><isbn>9781612843759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE9LwzAcjYigzn0BveQLdP7StElzHEVnYcPLwJOMpPkFI21Smk7ct7fiwHd4fw7vHR4h9wxWjIF6bN7WdbPKgbGVYAKAiQtyywTLq4LLkl3-h4Jfk2VKnzBD5LICcUPem34Y4xdaOsQ0ZSGGzgfUI_XB4oAzhYm2sR9i-HU66O6UfKI9Th_RUqPTXI2BbvQxJa8D3fnv6Tgi3UWL3R25crpLuDzrguyfn_b1S7Z93TT1ept5BVOmy9w6KYVS1hmtjTRWMieMw6JC6WTVcpBly3NtUFaKgYHSteAKzkupRMEX5OFv1iPiYRh9r8fT4fwG_wFa1lWl</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Lianfang Cai</creator><creator>Xuemin Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</title><author>Lianfang Cai ; Xuemin Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a52df77699dfbaab7bd71f6bfe48e7f78c3075c32abe78910b05fc0f433579643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blind source separation</topic><topic>Correlation</topic><topic>Entropy</topic><topic>Estimation</topic><topic>Joints</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Lianfang Cai</creatorcontrib><creatorcontrib>Xuemin Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lianfang Cai</au><au>Xuemin Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</atitle><btitle>The Fourth International Workshop on Advanced Computational Intelligence</btitle><stitle>IWACI</stitle><date>2011-10</date><risdate>2011</risdate><spage>274</spage><epage>279</epage><pages>274-279</pages><isbn>1612843743</isbn><isbn>9781612843742</isbn><eisbn>1612843751</eisbn><eisbn>9781612843735</eisbn><eisbn>1612843735</eisbn><eisbn>9781612843759</eisbn><abstract>For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.</abstract><pub>IEEE</pub><doi>10.1109/IWACI.2011.6160016</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612843743 |
ispartof | The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.274-279 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6160016 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Blind source separation Correlation Entropy Estimation Joints Vectors |
title | Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20post-nonlinear%20independent%20component%20analysis%20method%20based%20on%20Gaussian%20Mixture%20Model&rft.btitle=The%20Fourth%20International%20Workshop%20on%20Advanced%20Computational%20Intelligence&rft.au=Lianfang%20Cai&rft.date=2011-10&rft.spage=274&rft.epage=279&rft.pages=274-279&rft.isbn=1612843743&rft.isbn_list=9781612843742&rft_id=info:doi/10.1109/IWACI.2011.6160016&rft_dat=%3Cieee_6IE%3E6160016%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843751&rft.eisbn_list=9781612843735&rft.eisbn_list=1612843735&rft.eisbn_list=9781612843759&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6160016&rfr_iscdi=true |