Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model

For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lianfang Cai, Xuemin Tian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue
container_start_page 274
container_title
container_volume
creator Lianfang Cai
Xuemin Tian
description For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.
doi_str_mv 10.1109/IWACI.2011.6160016
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6160016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6160016</ieee_id><sourcerecordid>6160016</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a52df77699dfbaab7bd71f6bfe48e7f78c3075c32abe78910b05fc0f433579643</originalsourceid><addsrcrecordid>eNpFUE9LwzAcjYigzn0BveQLdP7StElzHEVnYcPLwJOMpPkFI21Smk7ct7fiwHd4fw7vHR4h9wxWjIF6bN7WdbPKgbGVYAKAiQtyywTLq4LLkl3-h4Jfk2VKnzBD5LICcUPem34Y4xdaOsQ0ZSGGzgfUI_XB4oAzhYm2sR9i-HU66O6UfKI9Th_RUqPTXI2BbvQxJa8D3fnv6Tgi3UWL3R25crpLuDzrguyfn_b1S7Z93TT1ept5BVOmy9w6KYVS1hmtjTRWMieMw6JC6WTVcpBly3NtUFaKgYHSteAKzkupRMEX5OFv1iPiYRh9r8fT4fwG_wFa1lWl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lianfang Cai ; Xuemin Tian</creator><creatorcontrib>Lianfang Cai ; Xuemin Tian</creatorcontrib><description>For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.</description><identifier>ISBN: 1612843743</identifier><identifier>ISBN: 9781612843742</identifier><identifier>EISBN: 1612843751</identifier><identifier>EISBN: 9781612843735</identifier><identifier>EISBN: 1612843735</identifier><identifier>EISBN: 9781612843759</identifier><identifier>DOI: 10.1109/IWACI.2011.6160016</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blind source separation ; Correlation ; Entropy ; Estimation ; Joints ; Vectors</subject><ispartof>The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.274-279</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6160016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6160016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lianfang Cai</creatorcontrib><creatorcontrib>Xuemin Tian</creatorcontrib><title>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</title><title>The Fourth International Workshop on Advanced Computational Intelligence</title><addtitle>IWACI</addtitle><description>For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.</description><subject>Blind source separation</subject><subject>Correlation</subject><subject>Entropy</subject><subject>Estimation</subject><subject>Joints</subject><subject>Vectors</subject><isbn>1612843743</isbn><isbn>9781612843742</isbn><isbn>1612843751</isbn><isbn>9781612843735</isbn><isbn>1612843735</isbn><isbn>9781612843759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE9LwzAcjYigzn0BveQLdP7StElzHEVnYcPLwJOMpPkFI21Smk7ct7fiwHd4fw7vHR4h9wxWjIF6bN7WdbPKgbGVYAKAiQtyywTLq4LLkl3-h4Jfk2VKnzBD5LICcUPem34Y4xdaOsQ0ZSGGzgfUI_XB4oAzhYm2sR9i-HU66O6UfKI9Th_RUqPTXI2BbvQxJa8D3fnv6Tgi3UWL3R25crpLuDzrguyfn_b1S7Z93TT1ept5BVOmy9w6KYVS1hmtjTRWMieMw6JC6WTVcpBly3NtUFaKgYHSteAKzkupRMEX5OFv1iPiYRh9r8fT4fwG_wFa1lWl</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Lianfang Cai</creator><creator>Xuemin Tian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</title><author>Lianfang Cai ; Xuemin Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a52df77699dfbaab7bd71f6bfe48e7f78c3075c32abe78910b05fc0f433579643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Blind source separation</topic><topic>Correlation</topic><topic>Entropy</topic><topic>Estimation</topic><topic>Joints</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Lianfang Cai</creatorcontrib><creatorcontrib>Xuemin Tian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lianfang Cai</au><au>Xuemin Tian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model</atitle><btitle>The Fourth International Workshop on Advanced Computational Intelligence</btitle><stitle>IWACI</stitle><date>2011-10</date><risdate>2011</risdate><spage>274</spage><epage>279</epage><pages>274-279</pages><isbn>1612843743</isbn><isbn>9781612843742</isbn><eisbn>1612843751</eisbn><eisbn>9781612843735</eisbn><eisbn>1612843735</eisbn><eisbn>9781612843759</eisbn><abstract>For conventional post-nonlinear independent component analysis (ICA) methods, the mutual information (MI) of separated signals is estimated by using higher order statistics (HOS). These methods are sensitive to the initial parameters of separating matrix. An improved method based on Gaussian Mixture Model (GMM) is proposed in this paper to solve this problem. GMM is used as an auxiliary function to fit the probability density of separated signals and to convert the MI estimation of separated signals to the joint entropy estimation of auxiliary variables. Meanwhile, higher order odd polynomial (HOOP) is used to fit the inverse function of nonlinear mixing function. Then the coefficients of HOOP and the parameters of GMM are optimized by particle swarm optimization (PSO). Linear separating matrix is optimized by natural gradient algorithm. The two optimization processes iterate alternately until convergence. The simulation results demonstrate that the proposed approach is less dependent on the initial parameters of separating matrix and can obtain more accurate separated signals, in contrast to the conventional post-nonlinear ICA approaches.</abstract><pub>IEEE</pub><doi>10.1109/IWACI.2011.6160016</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612843743
ispartof The Fourth International Workshop on Advanced Computational Intelligence, 2011, p.274-279
issn
language eng
recordid cdi_ieee_primary_6160016
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Blind source separation
Correlation
Entropy
Estimation
Joints
Vectors
title Improved post-nonlinear independent component analysis method based on Gaussian Mixture Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20post-nonlinear%20independent%20component%20analysis%20method%20based%20on%20Gaussian%20Mixture%20Model&rft.btitle=The%20Fourth%20International%20Workshop%20on%20Advanced%20Computational%20Intelligence&rft.au=Lianfang%20Cai&rft.date=2011-10&rft.spage=274&rft.epage=279&rft.pages=274-279&rft.isbn=1612843743&rft.isbn_list=9781612843742&rft_id=info:doi/10.1109/IWACI.2011.6160016&rft_dat=%3Cieee_6IE%3E6160016%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843751&rft.eisbn_list=9781612843735&rft.eisbn_list=1612843735&rft.eisbn_list=9781612843759&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6160016&rfr_iscdi=true