A new method of wavelet transform-based edge detection

In many edge detection methods, Finding a proper threshold is an unavoidable step. In this paper, a new algorithm of edge detection is proposed based on wavelet transform. After multiplying the DWT coefficients in the adjacent scale, a new method is proposed to calculate the proper threshold, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tao Yang, Guoxia Sun, Xiuman Duan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue
container_start_page 789
container_title
container_volume
creator Tao Yang
Guoxia Sun
Xiuman Duan
description In many edge detection methods, Finding a proper threshold is an unavoidable step. In this paper, a new algorithm of edge detection is proposed based on wavelet transform. After multiplying the DWT coefficients in the adjacent scale, a new method is proposed to calculate the proper threshold, which is used to separate the coefficients come from wavelet transform. After the multiplying the coefficients in adjacent scale, the product coming from noise are small and accounts for the most part of the data, while there are less product, whose amplitudes are bigger, coming from edge. Thus, we statistics the product and get the interval in which the amount of the product is the biggest. The threshold is the upper bound of the interval. A scheme is then designed to synthesis the two edge maps obtained in two orthometric directions. A set of the experiments demonstrate the effective of the approach.
doi_str_mv 10.1109/ICCT.2011.6157985
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6157985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6157985</ieee_id><sourcerecordid>6157985</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-8f328a17b8360e8a7b6dad78f7f1a90bd832fcc03ca39a866ccda2875f45b693</originalsourceid><addsrcrecordid>eNpFj81KAzEURiMiqLUPIG7yAjPmJs1NsiyDP4WCC7svd5IbHenMyEyw-PYKFvw2h7M58AlxC6oGUOF-0zS7WiuAGsG64O2ZuAYE7VdGWXX-LxguxXKeP9TvEH0AeyVwLQc-yp7L-5jkmOWRvvjARZaJhjmPU1-1NHOSnN5YJi4cSzcON-Ii02Hm5YkL8fr4sGueq-3L06ZZb6suqFL5bLQncK03qNiTazFRcj67DBRUm7zROUZlIplAHjHGRNo7m1e2xWAW4u6v2jHz_nPqepq-96eX5gcWGkW6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new method of wavelet transform-based edge detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tao Yang ; Guoxia Sun ; Xiuman Duan</creator><creatorcontrib>Tao Yang ; Guoxia Sun ; Xiuman Duan</creatorcontrib><description>In many edge detection methods, Finding a proper threshold is an unavoidable step. In this paper, a new algorithm of edge detection is proposed based on wavelet transform. After multiplying the DWT coefficients in the adjacent scale, a new method is proposed to calculate the proper threshold, which is used to separate the coefficients come from wavelet transform. After the multiplying the coefficients in adjacent scale, the product coming from noise are small and accounts for the most part of the data, while there are less product, whose amplitudes are bigger, coming from edge. Thus, we statistics the product and get the interval in which the amount of the product is the biggest. The threshold is the upper bound of the interval. A scheme is then designed to synthesis the two edge maps obtained in two orthometric directions. A set of the experiments demonstrate the effective of the approach.</description><identifier>ISBN: 1612843069</identifier><identifier>ISBN: 9781612843063</identifier><identifier>EISBN: 1612843050</identifier><identifier>EISBN: 9781612843070</identifier><identifier>EISBN: 9781612843056</identifier><identifier>EISBN: 1612843077</identifier><identifier>DOI: 10.1109/ICCT.2011.6157985</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additives ; Discrete wavelet transforms ; Edge detection ; Histograms ; Image edge detection ; Image processing ; Noise ; Statistics histogram ; Threshold ; Wavelet transform</subject><ispartof>2011 IEEE 13th International Conference on Communication Technology, 2011, p.789-792</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6157985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6157985$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao Yang</creatorcontrib><creatorcontrib>Guoxia Sun</creatorcontrib><creatorcontrib>Xiuman Duan</creatorcontrib><title>A new method of wavelet transform-based edge detection</title><title>2011 IEEE 13th International Conference on Communication Technology</title><addtitle>ICCT</addtitle><description>In many edge detection methods, Finding a proper threshold is an unavoidable step. In this paper, a new algorithm of edge detection is proposed based on wavelet transform. After multiplying the DWT coefficients in the adjacent scale, a new method is proposed to calculate the proper threshold, which is used to separate the coefficients come from wavelet transform. After the multiplying the coefficients in adjacent scale, the product coming from noise are small and accounts for the most part of the data, while there are less product, whose amplitudes are bigger, coming from edge. Thus, we statistics the product and get the interval in which the amount of the product is the biggest. The threshold is the upper bound of the interval. A scheme is then designed to synthesis the two edge maps obtained in two orthometric directions. A set of the experiments demonstrate the effective of the approach.</description><subject>Additives</subject><subject>Discrete wavelet transforms</subject><subject>Edge detection</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Image processing</subject><subject>Noise</subject><subject>Statistics histogram</subject><subject>Threshold</subject><subject>Wavelet transform</subject><isbn>1612843069</isbn><isbn>9781612843063</isbn><isbn>1612843050</isbn><isbn>9781612843070</isbn><isbn>9781612843056</isbn><isbn>1612843077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81KAzEURiMiqLUPIG7yAjPmJs1NsiyDP4WCC7svd5IbHenMyEyw-PYKFvw2h7M58AlxC6oGUOF-0zS7WiuAGsG64O2ZuAYE7VdGWXX-LxguxXKeP9TvEH0AeyVwLQc-yp7L-5jkmOWRvvjARZaJhjmPU1-1NHOSnN5YJi4cSzcON-Ii02Hm5YkL8fr4sGueq-3L06ZZb6suqFL5bLQncK03qNiTazFRcj67DBRUm7zROUZlIplAHjHGRNo7m1e2xWAW4u6v2jHz_nPqepq-96eX5gcWGkW6</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Tao Yang</creator><creator>Guoxia Sun</creator><creator>Xiuman Duan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>A new method of wavelet transform-based edge detection</title><author>Tao Yang ; Guoxia Sun ; Xiuman Duan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-8f328a17b8360e8a7b6dad78f7f1a90bd832fcc03ca39a866ccda2875f45b693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Additives</topic><topic>Discrete wavelet transforms</topic><topic>Edge detection</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Image processing</topic><topic>Noise</topic><topic>Statistics histogram</topic><topic>Threshold</topic><topic>Wavelet transform</topic><toplevel>online_resources</toplevel><creatorcontrib>Tao Yang</creatorcontrib><creatorcontrib>Guoxia Sun</creatorcontrib><creatorcontrib>Xiuman Duan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao Yang</au><au>Guoxia Sun</au><au>Xiuman Duan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new method of wavelet transform-based edge detection</atitle><btitle>2011 IEEE 13th International Conference on Communication Technology</btitle><stitle>ICCT</stitle><date>2011-09</date><risdate>2011</risdate><spage>789</spage><epage>792</epage><pages>789-792</pages><isbn>1612843069</isbn><isbn>9781612843063</isbn><eisbn>1612843050</eisbn><eisbn>9781612843070</eisbn><eisbn>9781612843056</eisbn><eisbn>1612843077</eisbn><abstract>In many edge detection methods, Finding a proper threshold is an unavoidable step. In this paper, a new algorithm of edge detection is proposed based on wavelet transform. After multiplying the DWT coefficients in the adjacent scale, a new method is proposed to calculate the proper threshold, which is used to separate the coefficients come from wavelet transform. After the multiplying the coefficients in adjacent scale, the product coming from noise are small and accounts for the most part of the data, while there are less product, whose amplitudes are bigger, coming from edge. Thus, we statistics the product and get the interval in which the amount of the product is the biggest. The threshold is the upper bound of the interval. A scheme is then designed to synthesis the two edge maps obtained in two orthometric directions. A set of the experiments demonstrate the effective of the approach.</abstract><pub>IEEE</pub><doi>10.1109/ICCT.2011.6157985</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612843069
ispartof 2011 IEEE 13th International Conference on Communication Technology, 2011, p.789-792
issn
language eng
recordid cdi_ieee_primary_6157985
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Additives
Discrete wavelet transforms
Edge detection
Histograms
Image edge detection
Image processing
Noise
Statistics histogram
Threshold
Wavelet transform
title A new method of wavelet transform-based edge detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20method%20of%20wavelet%20transform-based%20edge%20detection&rft.btitle=2011%20IEEE%2013th%20International%20Conference%20on%20Communication%20Technology&rft.au=Tao%20Yang&rft.date=2011-09&rft.spage=789&rft.epage=792&rft.pages=789-792&rft.isbn=1612843069&rft.isbn_list=9781612843063&rft_id=info:doi/10.1109/ICCT.2011.6157985&rft_dat=%3Cieee_6IE%3E6157985%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843050&rft.eisbn_list=9781612843070&rft.eisbn_list=9781612843056&rft.eisbn_list=1612843077&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6157985&rfr_iscdi=true