Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides
We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15-nm flat-band slow-light window ( vg ~ c /30), the bandwidth for correlated photon-pair gen...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2012-11, Vol.18 (6), p.1676-1683 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1683 |
---|---|
container_issue | 6 |
container_start_page | 1676 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 18 |
creator | Chunle Xiong Monat, C. Collins, M. J. Tranchant, L. Petiteau, D. Clark, A. S. Grillet, C. Marshall, G. D. Steel, M. J. Juntao Li O'Faolain, Liam Krauss, T. F. Eggleton, B. J. |
description | We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15-nm flat-band slow-light window ( vg ~ c /30), the bandwidth for correlated photon-pair generation in 96- and 196-μm-long waveguides was at least 11.2 nm, while a 396-μm-long waveguide reduced the bandwidth to 8 nm (only half of the slow-light bandwidth due to the increased impact of phase matching in a longer waveguide). The key metrics for a photon-pair source: coincidence to accidental ratio (CAR) and pair brightness were measured to be a maximum 33 at a pair generation rate of 0.004 pair per pulse in a 196- μm-long waveguide. Within the measurement errors, the maximum CAR achieved in 96-, 196-, and 396-μm-long waveguides is constant. The noise analysis shows that detector dark counts, leaked pump light, linear and nonlinear losses, multiple pair generation, and detector jitter are the limiting factors to the CAR performance of the sources. |
doi_str_mv | 10.1109/JSTQE.2012.2188995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6157693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6157693</ieee_id><sourcerecordid>1136413486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-5526a0da4145c6a1d5909e6a6fc00eb367340371aca64d39f1ea2aca44910f553</originalsourceid><addsrcrecordid>eNpdkUtPGzEURq2qSKWBP9BuLLFhM-H6OeNlNaI8FKmggNrdyPXcIUaTcbCdVvx7DIlYsLoPnXN1pY-QbwzmjIE5u17e3Z7POTA-56xpjFGfyCFTqqmkkvxz6aGuK67hzxfyNaVHAGhkA4cktSsbrcsYfcreJRoG2oYYcbQZe3qzCjlM9Mb6mOgFThjf1n6i92MuXlhvikyXfvSucMsx_K8W_mGV96Z3tI3PKduR_rb_8GHre0xH5GCwY8LjfZ2R-5_nd-1ltfh1cdX-WFRO8CZXSnFtobeSSeW0Zb0yYFBbPTgA_Ct0LSSImllnteyFGRhaXgYpDYNBKTEjp7u7mxietphyt_bJ4TjaCcM2dYwJLZmQjS7oyQf0MWzjVL7rGAgDrIZCzwjfUS6GlCIO3Sb6tY3PBepec-jecuhec-j2ORTp-07yiPguaKZqbYR4AUuXhQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039017011</pqid></control><display><type>article</type><title>Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides</title><source>IEEE Electronic Library (IEL)</source><creator>Chunle Xiong ; Monat, C. ; Collins, M. J. ; Tranchant, L. ; Petiteau, D. ; Clark, A. S. ; Grillet, C. ; Marshall, G. D. ; Steel, M. J. ; Juntao Li ; O'Faolain, Liam ; Krauss, T. F. ; Eggleton, B. J.</creator><creatorcontrib>Chunle Xiong ; Monat, C. ; Collins, M. J. ; Tranchant, L. ; Petiteau, D. ; Clark, A. S. ; Grillet, C. ; Marshall, G. D. ; Steel, M. J. ; Juntao Li ; O'Faolain, Liam ; Krauss, T. F. ; Eggleton, B. J.</creatorcontrib><description>We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15-nm flat-band slow-light window ( vg ~ c /30), the bandwidth for correlated photon-pair generation in 96- and 196-μm-long waveguides was at least 11.2 nm, while a 396-μm-long waveguide reduced the bandwidth to 8 nm (only half of the slow-light bandwidth due to the increased impact of phase matching in a longer waveguide). The key metrics for a photon-pair source: coincidence to accidental ratio (CAR) and pair brightness were measured to be a maximum 33 at a pair generation rate of 0.004 pair per pulse in a 196- μm-long waveguide. Within the measurement errors, the maximum CAR achieved in 96-, 196-, and 396-μm-long waveguides is constant. The noise analysis shows that detector dark counts, leaked pump light, linear and nonlinear losses, multiple pair generation, and detector jitter are the limiting factors to the CAR performance of the sources.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2012.2188995</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrayed waveguide gratings ; Bandwidth ; Correlation ; Crashworthiness ; Detectors ; Noise ; Nonlinear optics ; Photonic crystals ; Photonics ; Photons ; quantum photonics ; Silicon ; silicon photonic crystal ; slow light ; Waveguides</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2012-11, Vol.18 (6), p.1676-1683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov/Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-5526a0da4145c6a1d5909e6a6fc00eb367340371aca64d39f1ea2aca44910f553</citedby><cites>FETCH-LOGICAL-c328t-5526a0da4145c6a1d5909e6a6fc00eb367340371aca64d39f1ea2aca44910f553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6157693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6157693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chunle Xiong</creatorcontrib><creatorcontrib>Monat, C.</creatorcontrib><creatorcontrib>Collins, M. J.</creatorcontrib><creatorcontrib>Tranchant, L.</creatorcontrib><creatorcontrib>Petiteau, D.</creatorcontrib><creatorcontrib>Clark, A. S.</creatorcontrib><creatorcontrib>Grillet, C.</creatorcontrib><creatorcontrib>Marshall, G. D.</creatorcontrib><creatorcontrib>Steel, M. J.</creatorcontrib><creatorcontrib>Juntao Li</creatorcontrib><creatorcontrib>O'Faolain, Liam</creatorcontrib><creatorcontrib>Krauss, T. F.</creatorcontrib><creatorcontrib>Eggleton, B. J.</creatorcontrib><title>Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15-nm flat-band slow-light window ( vg ~ c /30), the bandwidth for correlated photon-pair generation in 96- and 196-μm-long waveguides was at least 11.2 nm, while a 396-μm-long waveguide reduced the bandwidth to 8 nm (only half of the slow-light bandwidth due to the increased impact of phase matching in a longer waveguide). The key metrics for a photon-pair source: coincidence to accidental ratio (CAR) and pair brightness were measured to be a maximum 33 at a pair generation rate of 0.004 pair per pulse in a 196- μm-long waveguide. Within the measurement errors, the maximum CAR achieved in 96-, 196-, and 396-μm-long waveguides is constant. The noise analysis shows that detector dark counts, leaked pump light, linear and nonlinear losses, multiple pair generation, and detector jitter are the limiting factors to the CAR performance of the sources.</description><subject>Arrayed waveguide gratings</subject><subject>Bandwidth</subject><subject>Correlation</subject><subject>Crashworthiness</subject><subject>Detectors</subject><subject>Noise</subject><subject>Nonlinear optics</subject><subject>Photonic crystals</subject><subject>Photonics</subject><subject>Photons</subject><subject>quantum photonics</subject><subject>Silicon</subject><subject>silicon photonic crystal</subject><subject>slow light</subject><subject>Waveguides</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtPGzEURq2qSKWBP9BuLLFhM-H6OeNlNaI8FKmggNrdyPXcIUaTcbCdVvx7DIlYsLoPnXN1pY-QbwzmjIE5u17e3Z7POTA-56xpjFGfyCFTqqmkkvxz6aGuK67hzxfyNaVHAGhkA4cktSsbrcsYfcreJRoG2oYYcbQZe3qzCjlM9Mb6mOgFThjf1n6i92MuXlhvikyXfvSucMsx_K8W_mGV96Z3tI3PKduR_rb_8GHre0xH5GCwY8LjfZ2R-5_nd-1ltfh1cdX-WFRO8CZXSnFtobeSSeW0Zb0yYFBbPTgA_Ct0LSSImllnteyFGRhaXgYpDYNBKTEjp7u7mxietphyt_bJ4TjaCcM2dYwJLZmQjS7oyQf0MWzjVL7rGAgDrIZCzwjfUS6GlCIO3Sb6tY3PBepec-jecuhec-j2ORTp-07yiPguaKZqbYR4AUuXhQU</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Chunle Xiong</creator><creator>Monat, C.</creator><creator>Collins, M. J.</creator><creator>Tranchant, L.</creator><creator>Petiteau, D.</creator><creator>Clark, A. S.</creator><creator>Grillet, C.</creator><creator>Marshall, G. D.</creator><creator>Steel, M. J.</creator><creator>Juntao Li</creator><creator>O'Faolain, Liam</creator><creator>Krauss, T. F.</creator><creator>Eggleton, B. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121101</creationdate><title>Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides</title><author>Chunle Xiong ; Monat, C. ; Collins, M. J. ; Tranchant, L. ; Petiteau, D. ; Clark, A. S. ; Grillet, C. ; Marshall, G. D. ; Steel, M. J. ; Juntao Li ; O'Faolain, Liam ; Krauss, T. F. ; Eggleton, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-5526a0da4145c6a1d5909e6a6fc00eb367340371aca64d39f1ea2aca44910f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrayed waveguide gratings</topic><topic>Bandwidth</topic><topic>Correlation</topic><topic>Crashworthiness</topic><topic>Detectors</topic><topic>Noise</topic><topic>Nonlinear optics</topic><topic>Photonic crystals</topic><topic>Photonics</topic><topic>Photons</topic><topic>quantum photonics</topic><topic>Silicon</topic><topic>silicon photonic crystal</topic><topic>slow light</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chunle Xiong</creatorcontrib><creatorcontrib>Monat, C.</creatorcontrib><creatorcontrib>Collins, M. J.</creatorcontrib><creatorcontrib>Tranchant, L.</creatorcontrib><creatorcontrib>Petiteau, D.</creatorcontrib><creatorcontrib>Clark, A. S.</creatorcontrib><creatorcontrib>Grillet, C.</creatorcontrib><creatorcontrib>Marshall, G. D.</creatorcontrib><creatorcontrib>Steel, M. J.</creatorcontrib><creatorcontrib>Juntao Li</creatorcontrib><creatorcontrib>O'Faolain, Liam</creatorcontrib><creatorcontrib>Krauss, T. F.</creatorcontrib><creatorcontrib>Eggleton, B. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chunle Xiong</au><au>Monat, C.</au><au>Collins, M. J.</au><au>Tranchant, L.</au><au>Petiteau, D.</au><au>Clark, A. S.</au><au>Grillet, C.</au><au>Marshall, G. D.</au><au>Steel, M. J.</au><au>Juntao Li</au><au>O'Faolain, Liam</au><au>Krauss, T. F.</au><au>Eggleton, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>18</volume><issue>6</issue><spage>1676</spage><epage>1683</epage><pages>1676-1683</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15-nm flat-band slow-light window ( vg ~ c /30), the bandwidth for correlated photon-pair generation in 96- and 196-μm-long waveguides was at least 11.2 nm, while a 396-μm-long waveguide reduced the bandwidth to 8 nm (only half of the slow-light bandwidth due to the increased impact of phase matching in a longer waveguide). The key metrics for a photon-pair source: coincidence to accidental ratio (CAR) and pair brightness were measured to be a maximum 33 at a pair generation rate of 0.004 pair per pulse in a 196- μm-long waveguide. Within the measurement errors, the maximum CAR achieved in 96-, 196-, and 396-μm-long waveguides is constant. The noise analysis shows that detector dark counts, leaked pump light, linear and nonlinear losses, multiple pair generation, and detector jitter are the limiting factors to the CAR performance of the sources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2012.2188995</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2012-11, Vol.18 (6), p.1676-1683 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_ieee_primary_6157693 |
source | IEEE Electronic Library (IEL) |
subjects | Arrayed waveguide gratings Bandwidth Correlation Crashworthiness Detectors Noise Nonlinear optics Photonic crystals Photonics Photons quantum photonics Silicon silicon photonic crystal slow light Waveguides |
title | Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A44%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20Correlated%20Photon%20Pairs%20Generated%20in%20Ultracompact%20Silicon%20Slow-Light%20Photonic%20Crystal%20Waveguides&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Chunle%20Xiong&rft.date=2012-11-01&rft.volume=18&rft.issue=6&rft.spage=1676&rft.epage=1683&rft.pages=1676-1683&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2012.2188995&rft_dat=%3Cproquest_RIE%3E1136413486%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039017011&rft_id=info:pmid/&rft_ieee_id=6157693&rfr_iscdi=true |