A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography

Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wolf, P. A., Sidky, E. Y., Schmidt, T. G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2671
container_issue
container_start_page 2668
container_title
container_volume
creator Wolf, P. A.
Sidky, E. Y.
Schmidt, T. G.
description Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorithm for sparse-view SPECT based on Compressed Sensing (CS) theory. The algorithm models Poisson noise by modifying the Iterative Hard Thresholding algorithm to minimize the Kullback-Leibler (KL) distance by gradient descent. Because the underlying objects of SPECT images are expected to be smooth, a discrete wavelet transform (DWT) using an orthogonal spline wavelet kernel is used as the sparsifying transform. Preliminary feasibility of the algorithm was tested on simulated data of a phantom consisting of two Gaussian distributions. Single-pinhole projection data with Poisson noise were simulated at 128, 60, 15, 10, and 5 views over 360 degrees. Image quality was assessed using the coefficient of variation and the relative contrast between the two objects in the phantom. Overall, the results demonstrate preliminary feasibility of the proposed CS algorithm for sparse-view SPECT imaging.
doi_str_mv 10.1109/NSSMIC.2011.6152786
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6152786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6152786</ieee_id><sourcerecordid>6152786</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fbbf7114d5e618e3dd060fd25ceaf9870eca9c51352c9eebcba983d055b1f0d63</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRc1LopR-QTf-gRSPHTvxsooKVCoPqWVdOfG4MWriKA6g_j2RqLibM5oZncUlZA5sAcD0w-t2-7IuFpwBLBRInuXqgtxBqjLBgDN5SSZcZlnCcq6v_g-Qi2sygXGZCCXTWzKL8ZONUUqnqZwQs6RVaLoeY0RLI7bRtwdqjofQ-6FuqAs9jZ3pIybfHn9o59s6HJFux7cR73UYQktXjY_Rj0Mxur6G0bQLTTj0pqtP9-TGmWPE2ZlT8vG42hXPyebtaV0sN4mHTA6JK0uXAaRWooIchbVMMWe5rNA4nWcMK6MrCULySiOWVWl0LiyTsgTHrBJTMv_zekTcd71vTH_an6sSvz_jW_8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wolf, P. A. ; Sidky, E. Y. ; Schmidt, T. G.</creator><creatorcontrib>Wolf, P. A. ; Sidky, E. Y. ; Schmidt, T. G.</creatorcontrib><description>Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorithm for sparse-view SPECT based on Compressed Sensing (CS) theory. The algorithm models Poisson noise by modifying the Iterative Hard Thresholding algorithm to minimize the Kullback-Leibler (KL) distance by gradient descent. Because the underlying objects of SPECT images are expected to be smooth, a discrete wavelet transform (DWT) using an orthogonal spline wavelet kernel is used as the sparsifying transform. Preliminary feasibility of the algorithm was tested on simulated data of a phantom consisting of two Gaussian distributions. Single-pinhole projection data with Poisson noise were simulated at 128, 60, 15, 10, and 5 views over 360 degrees. Image quality was assessed using the coefficient of variation and the relative contrast between the two objects in the phantom. Overall, the results demonstrate preliminary feasibility of the proposed CS algorithm for sparse-view SPECT imaging.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 1467301183</identifier><identifier>ISBN: 9781467301183</identifier><identifier>EISSN: 2577-0829</identifier><identifier>EISBN: 1467301205</identifier><identifier>EISBN: 1467301191</identifier><identifier>EISBN: 9781467301206</identifier><identifier>EISBN: 9781467301190</identifier><identifier>DOI: 10.1109/NSSMIC.2011.6152786</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Image resolution ; Spline ; Tomography ; Transforms</subject><ispartof>2011 IEEE Nuclear Science Symposium Conference Record, 2011, p.2668-2671</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6152786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6152786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wolf, P. A.</creatorcontrib><creatorcontrib>Sidky, E. Y.</creatorcontrib><creatorcontrib>Schmidt, T. G.</creatorcontrib><title>A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography</title><title>2011 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorithm for sparse-view SPECT based on Compressed Sensing (CS) theory. The algorithm models Poisson noise by modifying the Iterative Hard Thresholding algorithm to minimize the Kullback-Leibler (KL) distance by gradient descent. Because the underlying objects of SPECT images are expected to be smooth, a discrete wavelet transform (DWT) using an orthogonal spline wavelet kernel is used as the sparsifying transform. Preliminary feasibility of the algorithm was tested on simulated data of a phantom consisting of two Gaussian distributions. Single-pinhole projection data with Poisson noise were simulated at 128, 60, 15, 10, and 5 views over 360 degrees. Image quality was assessed using the coefficient of variation and the relative contrast between the two objects in the phantom. Overall, the results demonstrate preliminary feasibility of the proposed CS algorithm for sparse-view SPECT imaging.</description><subject>Biomedical imaging</subject><subject>Image resolution</subject><subject>Spline</subject><subject>Tomography</subject><subject>Transforms</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>1467301183</isbn><isbn>9781467301183</isbn><isbn>1467301205</isbn><isbn>1467301191</isbn><isbn>9781467301206</isbn><isbn>9781467301190</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRc1LopR-QTf-gRSPHTvxsooKVCoPqWVdOfG4MWriKA6g_j2RqLibM5oZncUlZA5sAcD0w-t2-7IuFpwBLBRInuXqgtxBqjLBgDN5SSZcZlnCcq6v_g-Qi2sygXGZCCXTWzKL8ZONUUqnqZwQs6RVaLoeY0RLI7bRtwdqjofQ-6FuqAs9jZ3pIybfHn9o59s6HJFux7cR73UYQktXjY_Rj0Mxur6G0bQLTTj0pqtP9-TGmWPE2ZlT8vG42hXPyebtaV0sN4mHTA6JK0uXAaRWooIchbVMMWe5rNA4nWcMK6MrCULySiOWVWl0LiyTsgTHrBJTMv_zekTcd71vTH_an6sSvz_jW_8</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Wolf, P. A.</creator><creator>Sidky, E. Y.</creator><creator>Schmidt, T. G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201110</creationdate><title>A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography</title><author>Wolf, P. A. ; Sidky, E. Y. ; Schmidt, T. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fbbf7114d5e618e3dd060fd25ceaf9870eca9c51352c9eebcba983d055b1f0d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomedical imaging</topic><topic>Image resolution</topic><topic>Spline</topic><topic>Tomography</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolf, P. A.</creatorcontrib><creatorcontrib>Sidky, E. Y.</creatorcontrib><creatorcontrib>Schmidt, T. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolf, P. A.</au><au>Sidky, E. Y.</au><au>Schmidt, T. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography</atitle><btitle>2011 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>2011-10</date><risdate>2011</risdate><spage>2668</spage><epage>2671</epage><pages>2668-2671</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>1467301183</isbn><isbn>9781467301183</isbn><eisbn>1467301205</eisbn><eisbn>1467301191</eisbn><eisbn>9781467301206</eisbn><eisbn>9781467301190</eisbn><abstract>Single Photon Emission Computed Tomography (SPECT) systems are being developed with multiple cameras and without gantry rotation to provide rapid dynamic acquisitions. However, the resulting data is angularly undersampled, due to the limited number of views. We propose a novel reconstruction algorithm for sparse-view SPECT based on Compressed Sensing (CS) theory. The algorithm models Poisson noise by modifying the Iterative Hard Thresholding algorithm to minimize the Kullback-Leibler (KL) distance by gradient descent. Because the underlying objects of SPECT images are expected to be smooth, a discrete wavelet transform (DWT) using an orthogonal spline wavelet kernel is used as the sparsifying transform. Preliminary feasibility of the algorithm was tested on simulated data of a phantom consisting of two Gaussian distributions. Single-pinhole projection data with Poisson noise were simulated at 128, 60, 15, 10, and 5 views over 360 degrees. Image quality was assessed using the coefficient of variation and the relative contrast between the two objects in the phantom. Overall, the results demonstrate preliminary feasibility of the proposed CS algorithm for sparse-view SPECT imaging.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.2011.6152786</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof 2011 IEEE Nuclear Science Symposium Conference Record, 2011, p.2668-2671
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_6152786
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Image resolution
Spline
Tomography
Transforms
title A compressed sensing algorithm for sparse-view pinhole Single Photon Emission Computed Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20compressed%20sensing%20algorithm%20for%20sparse-view%20pinhole%20Single%20Photon%20Emission%20Computed%20Tomography&rft.btitle=2011%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Wolf,%20P.%20A.&rft.date=2011-10&rft.spage=2668&rft.epage=2671&rft.pages=2668-2671&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=1467301183&rft.isbn_list=9781467301183&rft_id=info:doi/10.1109/NSSMIC.2011.6152786&rft_dat=%3Cieee_6IE%3E6152786%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467301205&rft.eisbn_list=1467301191&rft.eisbn_list=9781467301206&rft.eisbn_list=9781467301190&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6152786&rfr_iscdi=true