A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms
Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequenti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2013-02, Vol.17 (1), p.64-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 64 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 17 |
creator | Otero, F. E. B. Freitas, A. A. Johnson, C. G. |
description | Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms. |
doi_str_mv | 10.1109/TEVC.2012.2185846 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6151113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6151113</ieee_id><sourcerecordid>27110573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-38136b69e9f22ae0ddfe393c4eff3fd8bdcb8830e04b109542a84412d2f9db703</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEmPwAxCXXDh2xEnaJseqGjBpAomNj1uVps4I6tqRdKD9ezoN7WTLfh9LfqLoGugEgKq75fStmDAKbMJAJlKkJ9EIlICYUpaeDj2VKs4y-XEeXYTwRSmIBNQoKnPyhL9kgd9bbHunG1J0P-hduyKL3useVztiO09mbb01-2nR6BCcdUb3rmvJy7bBQN5d_0nyth_gpmt3JG9WnR9m63AZnVndBLz6r-Po9X66LB7j-fPDrMjnseFc9jGXwNMqVagsYxppXVvkihuB1nJby6o2lZScIhXV8G4imJZCAKuZVXWVUT6O4HDX-C4Ej7bceLfWflcCLfeGyr2hcm-o_Dc0MLcHZqOD0Y31ujUuHEGWDVyS8SF3c8g5RDyuU0gAgPM_kJ5wMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Otero, F. E. B. ; Freitas, A. A. ; Johnson, C. G.</creator><creatorcontrib>Otero, F. E. B. ; Freitas, A. A. ; Johnson, C. G.</creatorcontrib><description>Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2012.2185846</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accuracy ; Algorithmics. Computability. Computer arithmetics ; Ant colony optimization ; Applied sciences ; classification ; Classification algorithms ; Computational modeling ; Computer science; control theory; systems ; data mining ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Memory organisation. Data processing ; Prediction algorithms ; Predictive models ; rule induction ; sequential covering ; Software ; Theoretical computing ; Training</subject><ispartof>IEEE transactions on evolutionary computation, 2013-02, Vol.17 (1), p.64-76</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-38136b69e9f22ae0ddfe393c4eff3fd8bdcb8830e04b109542a84412d2f9db703</citedby><cites>FETCH-LOGICAL-c338t-38136b69e9f22ae0ddfe393c4eff3fd8bdcb8830e04b109542a84412d2f9db703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6151113$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6151113$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27110573$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Otero, F. E. B.</creatorcontrib><creatorcontrib>Freitas, A. A.</creatorcontrib><creatorcontrib>Johnson, C. G.</creatorcontrib><title>A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms.</description><subject>Accuracy</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Ant colony optimization</subject><subject>Applied sciences</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>data mining</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Memory organisation. Data processing</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>rule induction</subject><subject>sequential covering</subject><subject>Software</subject><subject>Theoretical computing</subject><subject>Training</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhisEEmPwAxCXXDh2xEnaJseqGjBpAomNj1uVps4I6tqRdKD9ezoN7WTLfh9LfqLoGugEgKq75fStmDAKbMJAJlKkJ9EIlICYUpaeDj2VKs4y-XEeXYTwRSmIBNQoKnPyhL9kgd9bbHunG1J0P-hduyKL3useVztiO09mbb01-2nR6BCcdUb3rmvJy7bBQN5d_0nyth_gpmt3JG9WnR9m63AZnVndBLz6r-Po9X66LB7j-fPDrMjnseFc9jGXwNMqVagsYxppXVvkihuB1nJby6o2lZScIhXV8G4imJZCAKuZVXWVUT6O4HDX-C4Ej7bceLfWflcCLfeGyr2hcm-o_Dc0MLcHZqOD0Y31ujUuHEGWDVyS8SF3c8g5RDyuU0gAgPM_kJ5wMQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Otero, F. E. B.</creator><creator>Freitas, A. A.</creator><creator>Johnson, C. G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130201</creationdate><title>A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms</title><author>Otero, F. E. B. ; Freitas, A. A. ; Johnson, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-38136b69e9f22ae0ddfe393c4eff3fd8bdcb8830e04b109542a84412d2f9db703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Ant colony optimization</topic><topic>Applied sciences</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>data mining</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Memory organisation. Data processing</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>rule induction</topic><topic>sequential covering</topic><topic>Software</topic><topic>Theoretical computing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otero, F. E. B.</creatorcontrib><creatorcontrib>Freitas, A. A.</creatorcontrib><creatorcontrib>Johnson, C. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Otero, F. E. B.</au><au>Freitas, A. A.</au><au>Johnson, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>17</volume><issue>1</issue><spage>64</spage><epage>76</epage><pages>64-76</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2012.2185846</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2013-02, Vol.17 (1), p.64-76 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_6151113 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithmics. Computability. Computer arithmetics Ant colony optimization Applied sciences classification Classification algorithms Computational modeling Computer science control theory systems data mining Data processing. List processing. Character string processing Exact sciences and technology Memory organisation. Data processing Prediction algorithms Predictive models rule induction sequential covering Software Theoretical computing Training |
title | A New Sequential Covering Strategy for Inducing Classification Rules With Ant Colony Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Sequential%20Covering%20Strategy%20for%20Inducing%20Classification%20Rules%20With%20Ant%20Colony%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Otero,%20F.%20E.%20B.&rft.date=2013-02-01&rft.volume=17&rft.issue=1&rft.spage=64&rft.epage=76&rft.pages=64-76&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2012.2185846&rft_dat=%3Cpascalfrancis_RIE%3E27110573%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6151113&rfr_iscdi=true |