2-phase optimization method for energy aware scheduling of virtual machines in cloud data centers
Need for computational power grows faster and faster so that we have "Cloud Computing" concept emerged from this need. In the other hand with growing popularity of computing and communication, request for more energy power increases and area of Green Computing try to moderate this procedur...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | |
container_start_page | 525 |
container_title | |
container_volume | |
creator | Taheri, M. M. Zamanifar, K. |
description | Need for computational power grows faster and faster so that we have "Cloud Computing" concept emerged from this need. In the other hand with growing popularity of computing and communication, request for more energy power increases and area of Green Computing try to moderate this procedure with revising old computing method or inventing new method to have more efficient computing material that would work more while consuming less energy and making less pollution. In this paper, the researchers tried to reduce energy consumed in Cloud computing datacenters by revising virtual machines scheduling method while keeping quality of service parameters as high as possible. We implemented our approach using CloudSim toolkit and evaluated it in compare with recent popular methods. Evaluation result demonstrates our success in reaching our aims to reduce energy consumption while keeping quality of service in acceptable range by reduction in number of virtual machines migrations. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6148392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6148392</ieee_id><sourcerecordid>6148392</sourcerecordid><originalsourceid>FETCH-ieee_primary_61483923</originalsourceid><addsrcrecordid>eNp9yU0KwjAQQOGICP71BG7mAkLS1jZZi-IB3MvQTtuRNilJqujpdeHa1YPvzURiSq2M1FkqpVRzsVb5oSyl1rlaiiSE-5dlURijy5XAdD92GAjcGHngN0Z2FgaKnauhcR7Ikm9fgE_0BKHqqJ56ti24Bh7s44Q9DFh1bCkAW6h6N9VQY0SoyEbyYSsWDfaBkl83Ync-XY-XPRPRbfQ8oH_dCpXrzKTZ__sBg55Csw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>2-phase optimization method for energy aware scheduling of virtual machines in cloud data centers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taheri, M. M. ; Zamanifar, K.</creator><creatorcontrib>Taheri, M. M. ; Zamanifar, K.</creatorcontrib><description>Need for computational power grows faster and faster so that we have "Cloud Computing" concept emerged from this need. In the other hand with growing popularity of computing and communication, request for more energy power increases and area of Green Computing try to moderate this procedure with revising old computing method or inventing new method to have more efficient computing material that would work more while consuming less energy and making less pollution. In this paper, the researchers tried to reduce energy consumed in Cloud computing datacenters by revising virtual machines scheduling method while keeping quality of service parameters as high as possible. We implemented our approach using CloudSim toolkit and evaluated it in compare with recent popular methods. Evaluation result demonstrates our success in reaching our aims to reduce energy consumption while keeping quality of service in acceptable range by reduction in number of virtual machines migrations.</description><identifier>ISBN: 1457708841</identifier><identifier>ISBN: 9781457708848</identifier><identifier>EISBN: 9781908320001</identifier><identifier>EISBN: 1908320001</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; DataCenter ; Energy consumption ; Energy Efficiency ; Green Computing ; Infra Structure as a Service ; Minimization ; Optimization methods ; Quality of service ; Virtual Machine Scheduling ; Virtual machining</subject><ispartof>2011 International Conference for Internet Technology and Secured Transactions, 2011, p.525-530</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6148392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6148392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taheri, M. M.</creatorcontrib><creatorcontrib>Zamanifar, K.</creatorcontrib><title>2-phase optimization method for energy aware scheduling of virtual machines in cloud data centers</title><title>2011 International Conference for Internet Technology and Secured Transactions</title><addtitle>ICITST</addtitle><description>Need for computational power grows faster and faster so that we have "Cloud Computing" concept emerged from this need. In the other hand with growing popularity of computing and communication, request for more energy power increases and area of Green Computing try to moderate this procedure with revising old computing method or inventing new method to have more efficient computing material that would work more while consuming less energy and making less pollution. In this paper, the researchers tried to reduce energy consumed in Cloud computing datacenters by revising virtual machines scheduling method while keeping quality of service parameters as high as possible. We implemented our approach using CloudSim toolkit and evaluated it in compare with recent popular methods. Evaluation result demonstrates our success in reaching our aims to reduce energy consumption while keeping quality of service in acceptable range by reduction in number of virtual machines migrations.</description><subject>Cloud computing</subject><subject>DataCenter</subject><subject>Energy consumption</subject><subject>Energy Efficiency</subject><subject>Green Computing</subject><subject>Infra Structure as a Service</subject><subject>Minimization</subject><subject>Optimization methods</subject><subject>Quality of service</subject><subject>Virtual Machine Scheduling</subject><subject>Virtual machining</subject><isbn>1457708841</isbn><isbn>9781457708848</isbn><isbn>9781908320001</isbn><isbn>1908320001</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9yU0KwjAQQOGICP71BG7mAkLS1jZZi-IB3MvQTtuRNilJqujpdeHa1YPvzURiSq2M1FkqpVRzsVb5oSyl1rlaiiSE-5dlURijy5XAdD92GAjcGHngN0Z2FgaKnauhcR7Ikm9fgE_0BKHqqJ56ti24Bh7s44Q9DFh1bCkAW6h6N9VQY0SoyEbyYSsWDfaBkl83Ync-XY-XPRPRbfQ8oH_dCpXrzKTZ__sBg55Csw</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Taheri, M. M.</creator><creator>Zamanifar, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>2-phase optimization method for energy aware scheduling of virtual machines in cloud data centers</title><author>Taheri, M. M. ; Zamanifar, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_61483923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cloud computing</topic><topic>DataCenter</topic><topic>Energy consumption</topic><topic>Energy Efficiency</topic><topic>Green Computing</topic><topic>Infra Structure as a Service</topic><topic>Minimization</topic><topic>Optimization methods</topic><topic>Quality of service</topic><topic>Virtual Machine Scheduling</topic><topic>Virtual machining</topic><toplevel>online_resources</toplevel><creatorcontrib>Taheri, M. M.</creatorcontrib><creatorcontrib>Zamanifar, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taheri, M. M.</au><au>Zamanifar, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>2-phase optimization method for energy aware scheduling of virtual machines in cloud data centers</atitle><btitle>2011 International Conference for Internet Technology and Secured Transactions</btitle><stitle>ICITST</stitle><date>2011-12</date><risdate>2011</risdate><spage>525</spage><epage>530</epage><pages>525-530</pages><isbn>1457708841</isbn><isbn>9781457708848</isbn><eisbn>9781908320001</eisbn><eisbn>1908320001</eisbn><abstract>Need for computational power grows faster and faster so that we have "Cloud Computing" concept emerged from this need. In the other hand with growing popularity of computing and communication, request for more energy power increases and area of Green Computing try to moderate this procedure with revising old computing method or inventing new method to have more efficient computing material that would work more while consuming less energy and making less pollution. In this paper, the researchers tried to reduce energy consumed in Cloud computing datacenters by revising virtual machines scheduling method while keeping quality of service parameters as high as possible. We implemented our approach using CloudSim toolkit and evaluated it in compare with recent popular methods. Evaluation result demonstrates our success in reaching our aims to reduce energy consumption while keeping quality of service in acceptable range by reduction in number of virtual machines migrations.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457708841 |
ispartof | 2011 International Conference for Internet Technology and Secured Transactions, 2011, p.525-530 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6148392 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing DataCenter Energy consumption Energy Efficiency Green Computing Infra Structure as a Service Minimization Optimization methods Quality of service Virtual Machine Scheduling Virtual machining |
title | 2-phase optimization method for energy aware scheduling of virtual machines in cloud data centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=2-phase%20optimization%20method%20for%20energy%20aware%20scheduling%20of%20virtual%20machines%20in%20cloud%20data%20centers&rft.btitle=2011%20International%20Conference%20for%20Internet%20Technology%20and%20Secured%20Transactions&rft.au=Taheri,%20M.%20M.&rft.date=2011-12&rft.spage=525&rft.epage=530&rft.pages=525-530&rft.isbn=1457708841&rft.isbn_list=9781457708848&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6148392%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781908320001&rft.eisbn_list=1908320001&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6148392&rfr_iscdi=true |