An event buffer flooding attack in DNP3 controlled SCADA systems
The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2626 |
---|---|
container_issue | |
container_start_page | 2614 |
container_title | |
container_volume | |
creator | Dong Jin Nicol, D. M. Guanhua Yan |
description | The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communications are asynchronous across the two levels; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a compromised relay sends overly many (false) events to the data aggregator. This paper investigates the attack by implementing the attack using real SCADA system hardware and software. A Discrete-Time Markov Chain (DTMC) model is developed for understanding conditions under which the attack is successful and effective. The model is validated by a Möbius simulation model and data collected on a real SCADA testbed. |
doi_str_mv | 10.1109/WSC.2011.6147969 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6147969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6147969</ieee_id><sourcerecordid>6147969</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-81da8072a5a49f6ddeec6288dba4b3edb18f0da9c1a8d50ad942667c678672c73</originalsourceid><addsrcrecordid>eNpFkMtKxDAUQOMLnBndC27yA625ed1kZ-n4gkGFUVwOaZNItdNKE4X5excOuDqLA2dxCLkAVgIwe_W2rkvOAEoNEq22B2QOUiFyYCgPyQyUMoUUTB39C8OPyYwZCwWi0KdkntIHY2AU8Bm5rgYafsKQafMdY5ho7MfRd8M7dTm79pN2A10-PgvajkOexr4Pnq7ralnRtEs5bNMZOYmuT-F8zwV5vb15qe-L1dPdQ12tio4D5sKAd4Yhd8pJG7X3IbSaG-MbJxsRfAMmMu9sC854xZy3kmuNrUajkbcoFuTyr9uFEDZfU7d1026z3yB-Ab1yS_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An event buffer flooding attack in DNP3 controlled SCADA systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dong Jin ; Nicol, D. M. ; Guanhua Yan</creator><creatorcontrib>Dong Jin ; Nicol, D. M. ; Guanhua Yan</creatorcontrib><description>The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communications are asynchronous across the two levels; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a compromised relay sends overly many (false) events to the data aggregator. This paper investigates the attack by implementing the attack using real SCADA system hardware and software. A Discrete-Time Markov Chain (DTMC) model is developed for understanding conditions under which the attack is successful and effective. The model is validated by a Möbius simulation model and data collected on a real SCADA testbed.</description><identifier>ISSN: 0891-7736</identifier><identifier>ISBN: 1457721082</identifier><identifier>ISBN: 9781457721083</identifier><identifier>EISSN: 1558-4305</identifier><identifier>EISBN: 1457721074</identifier><identifier>EISBN: 9781457721076</identifier><identifier>EISBN: 9781457721090</identifier><identifier>EISBN: 1457721090</identifier><identifier>EISBN: 1457721066</identifier><identifier>EISBN: 9781457721069</identifier><identifier>DOI: 10.1109/WSC.2011.6147969</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Data models ; Protocols ; Radiation detectors ; Relays ; SCADA systems ; Substations</subject><ispartof>Proceedings of the 2011 Winter Simulation Conference (WSC), 2011, p.2614-2626</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6147969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6147969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong Jin</creatorcontrib><creatorcontrib>Nicol, D. M.</creatorcontrib><creatorcontrib>Guanhua Yan</creatorcontrib><title>An event buffer flooding attack in DNP3 controlled SCADA systems</title><title>Proceedings of the 2011 Winter Simulation Conference (WSC)</title><addtitle>WSC</addtitle><description>The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communications are asynchronous across the two levels; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a compromised relay sends overly many (false) events to the data aggregator. This paper investigates the attack by implementing the attack using real SCADA system hardware and software. A Discrete-Time Markov Chain (DTMC) model is developed for understanding conditions under which the attack is successful and effective. The model is validated by a Möbius simulation model and data collected on a real SCADA testbed.</description><subject>Analytical models</subject><subject>Data models</subject><subject>Protocols</subject><subject>Radiation detectors</subject><subject>Relays</subject><subject>SCADA systems</subject><subject>Substations</subject><issn>0891-7736</issn><issn>1558-4305</issn><isbn>1457721082</isbn><isbn>9781457721083</isbn><isbn>1457721074</isbn><isbn>9781457721076</isbn><isbn>9781457721090</isbn><isbn>1457721090</isbn><isbn>1457721066</isbn><isbn>9781457721069</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtKxDAUQOMLnBndC27yA625ed1kZ-n4gkGFUVwOaZNItdNKE4X5excOuDqLA2dxCLkAVgIwe_W2rkvOAEoNEq22B2QOUiFyYCgPyQyUMoUUTB39C8OPyYwZCwWi0KdkntIHY2AU8Bm5rgYafsKQafMdY5ho7MfRd8M7dTm79pN2A10-PgvajkOexr4Pnq7ralnRtEs5bNMZOYmuT-F8zwV5vb15qe-L1dPdQ12tio4D5sKAd4Yhd8pJG7X3IbSaG-MbJxsRfAMmMu9sC854xZy3kmuNrUajkbcoFuTyr9uFEDZfU7d1026z3yB-Ab1yS_I</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Dong Jin</creator><creator>Nicol, D. M.</creator><creator>Guanhua Yan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>An event buffer flooding attack in DNP3 controlled SCADA systems</title><author>Dong Jin ; Nicol, D. M. ; Guanhua Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-81da8072a5a49f6ddeec6288dba4b3edb18f0da9c1a8d50ad942667c678672c73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical models</topic><topic>Data models</topic><topic>Protocols</topic><topic>Radiation detectors</topic><topic>Relays</topic><topic>SCADA systems</topic><topic>Substations</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong Jin</creatorcontrib><creatorcontrib>Nicol, D. M.</creatorcontrib><creatorcontrib>Guanhua Yan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong Jin</au><au>Nicol, D. M.</au><au>Guanhua Yan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An event buffer flooding attack in DNP3 controlled SCADA systems</atitle><btitle>Proceedings of the 2011 Winter Simulation Conference (WSC)</btitle><stitle>WSC</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>2614</spage><epage>2626</epage><pages>2614-2626</pages><issn>0891-7736</issn><eissn>1558-4305</eissn><isbn>1457721082</isbn><isbn>9781457721083</isbn><eisbn>1457721074</eisbn><eisbn>9781457721076</eisbn><eisbn>9781457721090</eisbn><eisbn>1457721090</eisbn><eisbn>1457721066</eisbn><eisbn>9781457721069</eisbn><abstract>The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communications are asynchronous across the two levels; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a compromised relay sends overly many (false) events to the data aggregator. This paper investigates the attack by implementing the attack using real SCADA system hardware and software. A Discrete-Time Markov Chain (DTMC) model is developed for understanding conditions under which the attack is successful and effective. The model is validated by a Möbius simulation model and data collected on a real SCADA testbed.</abstract><pub>IEEE</pub><doi>10.1109/WSC.2011.6147969</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0891-7736 |
ispartof | Proceedings of the 2011 Winter Simulation Conference (WSC), 2011, p.2614-2626 |
issn | 0891-7736 1558-4305 |
language | eng |
recordid | cdi_ieee_primary_6147969 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Data models Protocols Radiation detectors Relays SCADA systems Substations |
title | An event buffer flooding attack in DNP3 controlled SCADA systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20event%20buffer%20flooding%20attack%20in%20DNP3%20controlled%20SCADA%20systems&rft.btitle=Proceedings%20of%20the%202011%20Winter%20Simulation%20Conference%20(WSC)&rft.au=Dong%20Jin&rft.date=2011-01-01&rft.spage=2614&rft.epage=2626&rft.pages=2614-2626&rft.issn=0891-7736&rft.eissn=1558-4305&rft.isbn=1457721082&rft.isbn_list=9781457721083&rft_id=info:doi/10.1109/WSC.2011.6147969&rft_dat=%3Cieee_6IE%3E6147969%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457721074&rft.eisbn_list=9781457721076&rft.eisbn_list=9781457721090&rft.eisbn_list=1457721090&rft.eisbn_list=1457721066&rft.eisbn_list=9781457721069&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6147969&rfr_iscdi=true |