Frequent Substring-Based Sequence Classification with an Ensemble of Support Vector Machines Trained Using Reduced Amino Acid Alphabets
We propose a frequent pattern-based algorithm for predicting functions and localizations of proteins from their primary structure (amino acid sequence). We use reduced alphabets that capture the higher rate of substitution between amino acids that are physiochemically similar. Frequent sub strings a...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 180 |
container_title | |
container_volume | 2 |
creator | Chitraranjan, C. D. Alnemer, L. Al-Azzam, O. Salem, S. Denton, A. M. Iqbal, M. J. Kianian, S. F. |
description | We propose a frequent pattern-based algorithm for predicting functions and localizations of proteins from their primary structure (amino acid sequence). We use reduced alphabets that capture the higher rate of substitution between amino acids that are physiochemically similar. Frequent sub strings are mined from the training sequences, transformed into different alphabets, and used as features to train an ensemble of SVMs. We evaluate the performance of our algorithm using protein sub-cellular localization and protein function datasets. Pair-wise sequence-alignment-based nearest neighbor and basic SVM k-gram classifiers are included as comparison algorithms. Results show that the frequent sub string-based SVM classifier demonstrates better performance compared with other classifiers on the sub-cellular localization datasets and it performs competitively with the nearest neighbor classifier on the protein function datasets. Our results also show that the use of reduced alphabets provides statistically significant performance improvements for half of the classes studied. |
doi_str_mv | 10.1109/ICMLA.2011.71 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6147669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6147669</ieee_id><sourcerecordid>6147669</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-78e6e3d69d42b05874ff96a569c5833577cf355f926f2ed72c12705aed2acb6a3</originalsourceid><addsrcrecordid>eNotkMFOwzAQRI0QElB65MTFP5BiO7EdH0PUlkqtkGjhWjnOmhqlTohdIb6A38YC5vJ2VtqRdhC6pWRGKVH3q3qzrmaMUDqT9AxdEykULwSR7BxNlSxpwaVkNC_YJZqG8E6ShFCKyiv0vRjh4wQ-4u2pCXF0_i170AFavP3dG8B1p0Nw1hkdXe_xp4sHrD2e-wDHpgPc23Q7DP0Y8SuY2I94o83BeQh4N-rEFr-ElIufoT2Z5Kqj8z2ujEtjNxx0AzHcoAuruwDTf07QbjHf1Y_Z-mm5qqt15hSJmSxBQN4K1RasIbyUhbVKaC6U4WWepzeNzTm3ignLoJXMUCYJ19AybRqh8wm6-4t1ALAfRnfU49de0EKmQvIfFuljMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Frequent Substring-Based Sequence Classification with an Ensemble of Support Vector Machines Trained Using Reduced Amino Acid Alphabets</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chitraranjan, C. D. ; Alnemer, L. ; Al-Azzam, O. ; Salem, S. ; Denton, A. M. ; Iqbal, M. J. ; Kianian, S. F.</creator><creatorcontrib>Chitraranjan, C. D. ; Alnemer, L. ; Al-Azzam, O. ; Salem, S. ; Denton, A. M. ; Iqbal, M. J. ; Kianian, S. F.</creatorcontrib><description>We propose a frequent pattern-based algorithm for predicting functions and localizations of proteins from their primary structure (amino acid sequence). We use reduced alphabets that capture the higher rate of substitution between amino acids that are physiochemically similar. Frequent sub strings are mined from the training sequences, transformed into different alphabets, and used as features to train an ensemble of SVMs. We evaluate the performance of our algorithm using protein sub-cellular localization and protein function datasets. Pair-wise sequence-alignment-based nearest neighbor and basic SVM k-gram classifiers are included as comparison algorithms. Results show that the frequent sub string-based SVM classifier demonstrates better performance compared with other classifiers on the sub-cellular localization datasets and it performs competitively with the nearest neighbor classifier on the protein function datasets. Our results also show that the use of reduced alphabets provides statistically significant performance improvements for half of the classes studied.</description><identifier>ISBN: 9781457721342</identifier><identifier>ISBN: 1457721341</identifier><identifier>EISBN: 0769546072</identifier><identifier>EISBN: 9780769546070</identifier><identifier>DOI: 10.1109/ICMLA.2011.71</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amino acids ; Microorganisms ; Prediction algorithms ; Predictive models ; Proteins ; Support vector machines ; Training</subject><ispartof>2011 10th International Conference on Machine Learning and Applications and Workshops, 2011, Vol.2, p.180-185</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6147669$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6147669$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chitraranjan, C. D.</creatorcontrib><creatorcontrib>Alnemer, L.</creatorcontrib><creatorcontrib>Al-Azzam, O.</creatorcontrib><creatorcontrib>Salem, S.</creatorcontrib><creatorcontrib>Denton, A. M.</creatorcontrib><creatorcontrib>Iqbal, M. J.</creatorcontrib><creatorcontrib>Kianian, S. F.</creatorcontrib><title>Frequent Substring-Based Sequence Classification with an Ensemble of Support Vector Machines Trained Using Reduced Amino Acid Alphabets</title><title>2011 10th International Conference on Machine Learning and Applications and Workshops</title><addtitle>icmla</addtitle><description>We propose a frequent pattern-based algorithm for predicting functions and localizations of proteins from their primary structure (amino acid sequence). We use reduced alphabets that capture the higher rate of substitution between amino acids that are physiochemically similar. Frequent sub strings are mined from the training sequences, transformed into different alphabets, and used as features to train an ensemble of SVMs. We evaluate the performance of our algorithm using protein sub-cellular localization and protein function datasets. Pair-wise sequence-alignment-based nearest neighbor and basic SVM k-gram classifiers are included as comparison algorithms. Results show that the frequent sub string-based SVM classifier demonstrates better performance compared with other classifiers on the sub-cellular localization datasets and it performs competitively with the nearest neighbor classifier on the protein function datasets. Our results also show that the use of reduced alphabets provides statistically significant performance improvements for half of the classes studied.</description><subject>Amino acids</subject><subject>Microorganisms</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Proteins</subject><subject>Support vector machines</subject><subject>Training</subject><isbn>9781457721342</isbn><isbn>1457721341</isbn><isbn>0769546072</isbn><isbn>9780769546070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkMFOwzAQRI0QElB65MTFP5BiO7EdH0PUlkqtkGjhWjnOmhqlTohdIb6A38YC5vJ2VtqRdhC6pWRGKVH3q3qzrmaMUDqT9AxdEykULwSR7BxNlSxpwaVkNC_YJZqG8E6ShFCKyiv0vRjh4wQ-4u2pCXF0_i170AFavP3dG8B1p0Nw1hkdXe_xp4sHrD2e-wDHpgPc23Q7DP0Y8SuY2I94o83BeQh4N-rEFr-ElIufoT2Z5Kqj8z2ujEtjNxx0AzHcoAuruwDTf07QbjHf1Y_Z-mm5qqt15hSJmSxBQN4K1RasIbyUhbVKaC6U4WWepzeNzTm3ignLoJXMUCYJ19AybRqh8wm6-4t1ALAfRnfU49de0EKmQvIfFuljMA</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Chitraranjan, C. D.</creator><creator>Alnemer, L.</creator><creator>Al-Azzam, O.</creator><creator>Salem, S.</creator><creator>Denton, A. M.</creator><creator>Iqbal, M. J.</creator><creator>Kianian, S. F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Frequent Substring-Based Sequence Classification with an Ensemble of Support Vector Machines Trained Using Reduced Amino Acid Alphabets</title><author>Chitraranjan, C. D. ; Alnemer, L. ; Al-Azzam, O. ; Salem, S. ; Denton, A. M. ; Iqbal, M. J. ; Kianian, S. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-78e6e3d69d42b05874ff96a569c5833577cf355f926f2ed72c12705aed2acb6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Microorganisms</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Proteins</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chitraranjan, C. D.</creatorcontrib><creatorcontrib>Alnemer, L.</creatorcontrib><creatorcontrib>Al-Azzam, O.</creatorcontrib><creatorcontrib>Salem, S.</creatorcontrib><creatorcontrib>Denton, A. M.</creatorcontrib><creatorcontrib>Iqbal, M. J.</creatorcontrib><creatorcontrib>Kianian, S. F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chitraranjan, C. D.</au><au>Alnemer, L.</au><au>Al-Azzam, O.</au><au>Salem, S.</au><au>Denton, A. M.</au><au>Iqbal, M. J.</au><au>Kianian, S. F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Frequent Substring-Based Sequence Classification with an Ensemble of Support Vector Machines Trained Using Reduced Amino Acid Alphabets</atitle><btitle>2011 10th International Conference on Machine Learning and Applications and Workshops</btitle><stitle>icmla</stitle><date>2011-12</date><risdate>2011</risdate><volume>2</volume><spage>180</spage><epage>185</epage><pages>180-185</pages><isbn>9781457721342</isbn><isbn>1457721341</isbn><eisbn>0769546072</eisbn><eisbn>9780769546070</eisbn><abstract>We propose a frequent pattern-based algorithm for predicting functions and localizations of proteins from their primary structure (amino acid sequence). We use reduced alphabets that capture the higher rate of substitution between amino acids that are physiochemically similar. Frequent sub strings are mined from the training sequences, transformed into different alphabets, and used as features to train an ensemble of SVMs. We evaluate the performance of our algorithm using protein sub-cellular localization and protein function datasets. Pair-wise sequence-alignment-based nearest neighbor and basic SVM k-gram classifiers are included as comparison algorithms. Results show that the frequent sub string-based SVM classifier demonstrates better performance compared with other classifiers on the sub-cellular localization datasets and it performs competitively with the nearest neighbor classifier on the protein function datasets. Our results also show that the use of reduced alphabets provides statistically significant performance improvements for half of the classes studied.</abstract><pub>IEEE</pub><doi>10.1109/ICMLA.2011.71</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457721342 |
ispartof | 2011 10th International Conference on Machine Learning and Applications and Workshops, 2011, Vol.2, p.180-185 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6147669 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Amino acids Microorganisms Prediction algorithms Predictive models Proteins Support vector machines Training |
title | Frequent Substring-Based Sequence Classification with an Ensemble of Support Vector Machines Trained Using Reduced Amino Acid Alphabets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Frequent%20Substring-Based%20Sequence%20Classification%20with%20an%20Ensemble%20of%20Support%20Vector%20Machines%20Trained%20Using%20Reduced%20Amino%20Acid%20Alphabets&rft.btitle=2011%2010th%20International%20Conference%20on%20Machine%20Learning%20and%20Applications%20and%20Workshops&rft.au=Chitraranjan,%20C.%20D.&rft.date=2011-12&rft.volume=2&rft.spage=180&rft.epage=185&rft.pages=180-185&rft.isbn=9781457721342&rft.isbn_list=1457721341&rft_id=info:doi/10.1109/ICMLA.2011.71&rft_dat=%3Cieee_6IE%3E6147669%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769546072&rft.eisbn_list=9780769546070&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6147669&rfr_iscdi=true |