Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes

Motion detection in animals and humans employs non-linear correlation of local spatiotemporal contrast induced by movement through the environment to estimate local motion. An undesirable consequence of this mechanism is that variability in pattern structure and contrast inherent in natural scenes p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: O'Carroll, D. C., Barnett, P. D., Nordstrom, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 131
container_title
container_volume
creator O'Carroll, D. C.
Barnett, P. D.
Nordstrom, K.
description Motion detection in animals and humans employs non-linear correlation of local spatiotemporal contrast induced by movement through the environment to estimate local motion. An undesirable consequence of this mechanism is that variability in pattern structure and contrast inherent in natural scenes profoundly influences local motion responses. In fly motion detection, this `pattern noise' is mitigated in part by spatial integration across wide regions of space to form matched filters for expected higher order patterns of optical flow. While this spatial averaging provides a partial solution to the pattern noise problem, recent work using physiological techniques highlights contributions to velocity coding from static non-linear spatial integration mechanisms (spatial gain control) and dynamic temporal gain control mechanisms. Little is known, however, about how such non-linearities co-ordinate to assist neural coding in the context of the motion of natural scenes. In this paper we used a simple computational model for an array of elaborated elementary motion detector (EMDs) based on the classical Hassenstein-Reichardt correlation model, as a predictor for the local pattern dependence of responses to a set of natural scenes as used in our recent work on velocity coding. Our results reveal that receptive field alone is a poor predictor of the spatial integration properties of these neurons. If anything, additional non-linearity appears to enhance the pattern dependence of the response.
doi_str_mv 10.1109/ISSNIP.2011.6146601
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_6146601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6146601</ieee_id><sourcerecordid>oai_DiVA_org_uu_183605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1775-138ccad135349e31fc3eb67444433c1d9ef1b66e64f7d2f3f2775a08ad8dc1f73</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhSMiqLVP0Js8gK3JZjfZvSz1r1BUqIp3SzY7WSLbpCS7Lb31yY39cRgYDvOdAzMIjSiZUEqKu_ly-TJ_mySE0gmnKeeEnqFhIXKaZkIQLtLsHF2fRPZ1iYYhfJNYnBc5Sa7Qz8yt1n0nO-OsbPHK1dAG7GEDUVlnx62xIL3pdtjY2B00fg9jp3Hr1N6z18E0MSHg6o8MoLrTooYuKucD3hjYGttgK7veR2dQYCHcoAsdjTA8zgH6eHx4nz2PF69P89l0MVZUiGxMWa6UrCnLWFoAo1oxqOKFsRhTtC5A04pz4KkWdaKZTqJLklzWea2oFmyAbg-5YQvrvirX3qyk35VOmvLefE5L55uy70uaM06yiI8OuAGAf_j4ZfYL_el0zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>O'Carroll, D. C. ; Barnett, P. D. ; Nordstrom, K.</creator><creatorcontrib>O'Carroll, D. C. ; Barnett, P. D. ; Nordstrom, K.</creatorcontrib><description>Motion detection in animals and humans employs non-linear correlation of local spatiotemporal contrast induced by movement through the environment to estimate local motion. An undesirable consequence of this mechanism is that variability in pattern structure and contrast inherent in natural scenes profoundly influences local motion responses. In fly motion detection, this `pattern noise' is mitigated in part by spatial integration across wide regions of space to form matched filters for expected higher order patterns of optical flow. While this spatial averaging provides a partial solution to the pattern noise problem, recent work using physiological techniques highlights contributions to velocity coding from static non-linear spatial integration mechanisms (spatial gain control) and dynamic temporal gain control mechanisms. Little is known, however, about how such non-linearities co-ordinate to assist neural coding in the context of the motion of natural scenes. In this paper we used a simple computational model for an array of elaborated elementary motion detector (EMDs) based on the classical Hassenstein-Reichardt correlation model, as a predictor for the local pattern dependence of responses to a set of natural scenes as used in our recent work on velocity coding. Our results reveal that receptive field alone is a poor predictor of the spatial integration properties of these neurons. If anything, additional non-linearity appears to enhance the pattern dependence of the response.</description><identifier>ISBN: 145770675X</identifier><identifier>ISBN: 9781457706752</identifier><identifier>EISBN: 9781457706745</identifier><identifier>EISBN: 1457706733</identifier><identifier>EISBN: 9781457706738</identifier><identifier>EISBN: 1457706741</identifier><identifier>DOI: 10.1109/ISSNIP.2011.6146601</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Computational modeling ; Correlation ; Neurons ; Noise ; Predictive models ; Shape</subject><ispartof>2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2011, p.131-136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1775-138ccad135349e31fc3eb67444433c1d9ef1b66e64f7d2f3f2775a08ad8dc1f73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6146601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6146601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183605$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Carroll, D. C.</creatorcontrib><creatorcontrib>Barnett, P. D.</creatorcontrib><creatorcontrib>Nordstrom, K.</creatorcontrib><title>Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes</title><title>2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing</title><addtitle>ISSNIP</addtitle><description>Motion detection in animals and humans employs non-linear correlation of local spatiotemporal contrast induced by movement through the environment to estimate local motion. An undesirable consequence of this mechanism is that variability in pattern structure and contrast inherent in natural scenes profoundly influences local motion responses. In fly motion detection, this `pattern noise' is mitigated in part by spatial integration across wide regions of space to form matched filters for expected higher order patterns of optical flow. While this spatial averaging provides a partial solution to the pattern noise problem, recent work using physiological techniques highlights contributions to velocity coding from static non-linear spatial integration mechanisms (spatial gain control) and dynamic temporal gain control mechanisms. Little is known, however, about how such non-linearities co-ordinate to assist neural coding in the context of the motion of natural scenes. In this paper we used a simple computational model for an array of elaborated elementary motion detector (EMDs) based on the classical Hassenstein-Reichardt correlation model, as a predictor for the local pattern dependence of responses to a set of natural scenes as used in our recent work on velocity coding. Our results reveal that receptive field alone is a poor predictor of the spatial integration properties of these neurons. If anything, additional non-linearity appears to enhance the pattern dependence of the response.</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Neurons</subject><subject>Noise</subject><subject>Predictive models</subject><subject>Shape</subject><isbn>145770675X</isbn><isbn>9781457706752</isbn><isbn>9781457706745</isbn><isbn>1457706733</isbn><isbn>9781457706738</isbn><isbn>1457706741</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1KAzEQhSMiqLVP0Js8gK3JZjfZvSz1r1BUqIp3SzY7WSLbpCS7Lb31yY39cRgYDvOdAzMIjSiZUEqKu_ly-TJ_mySE0gmnKeeEnqFhIXKaZkIQLtLsHF2fRPZ1iYYhfJNYnBc5Sa7Qz8yt1n0nO-OsbPHK1dAG7GEDUVlnx62xIL3pdtjY2B00fg9jp3Hr1N6z18E0MSHg6o8MoLrTooYuKucD3hjYGttgK7veR2dQYCHcoAsdjTA8zgH6eHx4nz2PF69P89l0MVZUiGxMWa6UrCnLWFoAo1oxqOKFsRhTtC5A04pz4KkWdaKZTqJLklzWea2oFmyAbg-5YQvrvirX3qyk35VOmvLefE5L55uy70uaM06yiI8OuAGAf_j4ZfYL_el0zw</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>O'Carroll, D. C.</creator><creator>Barnett, P. D.</creator><creator>Nordstrom, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DF2</scope></search><sort><creationdate>201112</creationdate><title>Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes</title><author>O'Carroll, D. C. ; Barnett, P. D. ; Nordstrom, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1775-138ccad135349e31fc3eb67444433c1d9ef1b66e64f7d2f3f2775a08ad8dc1f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Neurons</topic><topic>Noise</topic><topic>Predictive models</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Carroll, D. C.</creatorcontrib><creatorcontrib>Barnett, P. D.</creatorcontrib><creatorcontrib>Nordstrom, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Uppsala universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>O'Carroll, D. C.</au><au>Barnett, P. D.</au><au>Nordstrom, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes</atitle><btitle>2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing</btitle><stitle>ISSNIP</stitle><date>2011-12</date><risdate>2011</risdate><spage>131</spage><epage>136</epage><pages>131-136</pages><isbn>145770675X</isbn><isbn>9781457706752</isbn><eisbn>9781457706745</eisbn><eisbn>1457706733</eisbn><eisbn>9781457706738</eisbn><eisbn>1457706741</eisbn><abstract>Motion detection in animals and humans employs non-linear correlation of local spatiotemporal contrast induced by movement through the environment to estimate local motion. An undesirable consequence of this mechanism is that variability in pattern structure and contrast inherent in natural scenes profoundly influences local motion responses. In fly motion detection, this `pattern noise' is mitigated in part by spatial integration across wide regions of space to form matched filters for expected higher order patterns of optical flow. While this spatial averaging provides a partial solution to the pattern noise problem, recent work using physiological techniques highlights contributions to velocity coding from static non-linear spatial integration mechanisms (spatial gain control) and dynamic temporal gain control mechanisms. Little is known, however, about how such non-linearities co-ordinate to assist neural coding in the context of the motion of natural scenes. In this paper we used a simple computational model for an array of elaborated elementary motion detector (EMDs) based on the classical Hassenstein-Reichardt correlation model, as a predictor for the local pattern dependence of responses to a set of natural scenes as used in our recent work on velocity coding. Our results reveal that receptive field alone is a poor predictor of the spatial integration properties of these neurons. If anything, additional non-linearity appears to enhance the pattern dependence of the response.</abstract><pub>IEEE</pub><doi>10.1109/ISSNIP.2011.6146601</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 145770675X
ispartof 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, 2011, p.131-136
issn
language eng
recordid cdi_ieee_primary_6146601
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Computational modeling
Correlation
Neurons
Noise
Predictive models
Shape
title Computational models reveal non-linearity in integration of local motion signals by insect motion detectors viewing natural scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20models%20reveal%20non-linearity%20in%20integration%20of%20local%20motion%20signals%20by%20insect%20motion%20detectors%20viewing%20natural%20scenes&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Intelligent%20Sensors,%20Sensor%20Networks%20and%20Information%20Processing&rft.au=O'Carroll,%20D.%20C.&rft.date=2011-12&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.isbn=145770675X&rft.isbn_list=9781457706752&rft_id=info:doi/10.1109/ISSNIP.2011.6146601&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_uu_183605%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457706745&rft.eisbn_list=1457706733&rft.eisbn_list=9781457706738&rft.eisbn_list=1457706741&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6146601&rfr_iscdi=true