A Social Network-based serendipity recommender system

The appearing of the internet brings a large amount of information, this makes searching and filtering difficult. Therefore, a kind of special data mining technique appeared, it called Recommender System. Most research of recommender system always provides the most relevant items for users or items....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu-Shian Chiu, Kuei-Hong Lin, Jia-Sin Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Yu-Shian Chiu
Kuei-Hong Lin
Jia-Sin Chen
description The appearing of the internet brings a large amount of information, this makes searching and filtering difficult. Therefore, a kind of special data mining technique appeared, it called Recommender System. Most research of recommender system always provides the most relevant items for users or items. However, recommendations from traditional recommender system may not satisfy the new human beings because users may already know these relevant items from other information sources. We believe that there are still some unsearched but less relevant items useful for users. On the other hand, because social network has grown very quickly, we think that there are some very useful interactive information that recommender systems can use to provide recommendations. Therefore, we propose a Social Network-based Serendipity (SNS) recommender system that uses interactive information from the social network to find out which items are interesting for users but hard to discover by themselves.
doi_str_mv 10.1109/ISPACS.2011.6146073
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6146073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6146073</ieee_id><sourcerecordid>6146073</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-699f46d5d47b9dc17568529cb76352481dd3727bed7dda74ca4e298376ac29a53</originalsourceid><addsrcrecordid>eNpFj8tqwzAQRVVKoG2aL8jGP2BXo9dYS2P6CIS24OyDLE1AaVwHyVD89w000LO5nM2Fw9gaeAXA7dOm-2zarhIcoDKgDEd5wx5AaUQBRsnbf9Fwx1Y5H_kFY2wN9p7ppuhGH92peKfpZ0xfZe8yhSJTou8Qz3Gai0R-HIaLUirynCcaHtni4E6ZVtddst3L8659K7cfr5u22ZbR8qk01h6UCToo7G3wgNrUWljfo5FaqBpCkCiwp4AhOFTeKRK2lmicF9ZpuWTrv9tIRPtzioNL8_5aKX8BvdFF-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Social Network-based serendipity recommender system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yu-Shian Chiu ; Kuei-Hong Lin ; Jia-Sin Chen</creator><creatorcontrib>Yu-Shian Chiu ; Kuei-Hong Lin ; Jia-Sin Chen</creatorcontrib><description>The appearing of the internet brings a large amount of information, this makes searching and filtering difficult. Therefore, a kind of special data mining technique appeared, it called Recommender System. Most research of recommender system always provides the most relevant items for users or items. However, recommendations from traditional recommender system may not satisfy the new human beings because users may already know these relevant items from other information sources. We believe that there are still some unsearched but less relevant items useful for users. On the other hand, because social network has grown very quickly, we think that there are some very useful interactive information that recommender systems can use to provide recommendations. Therefore, we propose a Social Network-based Serendipity (SNS) recommender system that uses interactive information from the social network to find out which items are interesting for users but hard to discover by themselves.</description><identifier>ISBN: 1457721651</identifier><identifier>ISBN: 9781457721656</identifier><identifier>EISBN: 1457721643</identifier><identifier>EISBN: 145772166X</identifier><identifier>EISBN: 9781457721663</identifier><identifier>EISBN: 9781457721649</identifier><identifier>DOI: 10.1109/ISPACS.2011.6146073</identifier><language>eng</language><publisher>IEEE</publisher><subject>recommender system ; serendipity ; social network</subject><ispartof>2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6146073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6146073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu-Shian Chiu</creatorcontrib><creatorcontrib>Kuei-Hong Lin</creatorcontrib><creatorcontrib>Jia-Sin Chen</creatorcontrib><title>A Social Network-based serendipity recommender system</title><title>2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS)</title><addtitle>ISPACS</addtitle><description>The appearing of the internet brings a large amount of information, this makes searching and filtering difficult. Therefore, a kind of special data mining technique appeared, it called Recommender System. Most research of recommender system always provides the most relevant items for users or items. However, recommendations from traditional recommender system may not satisfy the new human beings because users may already know these relevant items from other information sources. We believe that there are still some unsearched but less relevant items useful for users. On the other hand, because social network has grown very quickly, we think that there are some very useful interactive information that recommender systems can use to provide recommendations. Therefore, we propose a Social Network-based Serendipity (SNS) recommender system that uses interactive information from the social network to find out which items are interesting for users but hard to discover by themselves.</description><subject>recommender system</subject><subject>serendipity</subject><subject>social network</subject><isbn>1457721651</isbn><isbn>9781457721656</isbn><isbn>1457721643</isbn><isbn>145772166X</isbn><isbn>9781457721663</isbn><isbn>9781457721649</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8tqwzAQRVVKoG2aL8jGP2BXo9dYS2P6CIS24OyDLE1AaVwHyVD89w000LO5nM2Fw9gaeAXA7dOm-2zarhIcoDKgDEd5wx5AaUQBRsnbf9Fwx1Y5H_kFY2wN9p7ppuhGH92peKfpZ0xfZe8yhSJTou8Qz3Gai0R-HIaLUirynCcaHtni4E6ZVtddst3L8659K7cfr5u22ZbR8qk01h6UCToo7G3wgNrUWljfo5FaqBpCkCiwp4AhOFTeKRK2lmicF9ZpuWTrv9tIRPtzioNL8_5aKX8BvdFF-g</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Yu-Shian Chiu</creator><creator>Kuei-Hong Lin</creator><creator>Jia-Sin Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>A Social Network-based serendipity recommender system</title><author>Yu-Shian Chiu ; Kuei-Hong Lin ; Jia-Sin Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-699f46d5d47b9dc17568529cb76352481dd3727bed7dda74ca4e298376ac29a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>recommender system</topic><topic>serendipity</topic><topic>social network</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu-Shian Chiu</creatorcontrib><creatorcontrib>Kuei-Hong Lin</creatorcontrib><creatorcontrib>Jia-Sin Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu-Shian Chiu</au><au>Kuei-Hong Lin</au><au>Jia-Sin Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Social Network-based serendipity recommender system</atitle><btitle>2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS)</btitle><stitle>ISPACS</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>1457721651</isbn><isbn>9781457721656</isbn><eisbn>1457721643</eisbn><eisbn>145772166X</eisbn><eisbn>9781457721663</eisbn><eisbn>9781457721649</eisbn><abstract>The appearing of the internet brings a large amount of information, this makes searching and filtering difficult. Therefore, a kind of special data mining technique appeared, it called Recommender System. Most research of recommender system always provides the most relevant items for users or items. However, recommendations from traditional recommender system may not satisfy the new human beings because users may already know these relevant items from other information sources. We believe that there are still some unsearched but less relevant items useful for users. On the other hand, because social network has grown very quickly, we think that there are some very useful interactive information that recommender systems can use to provide recommendations. Therefore, we propose a Social Network-based Serendipity (SNS) recommender system that uses interactive information from the social network to find out which items are interesting for users but hard to discover by themselves.</abstract><pub>IEEE</pub><doi>10.1109/ISPACS.2011.6146073</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457721651
ispartof 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2011, p.1-5
issn
language eng
recordid cdi_ieee_primary_6146073
source IEEE Electronic Library (IEL) Conference Proceedings
subjects recommender system
serendipity
social network
title A Social Network-based serendipity recommender system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A55%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Social%20Network-based%20serendipity%20recommender%20system&rft.btitle=2011%20International%20Symposium%20on%20Intelligent%20Signal%20Processing%20and%20Communications%20Systems%20(ISPACS)&rft.au=Yu-Shian%20Chiu&rft.date=2011-12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=1457721651&rft.isbn_list=9781457721656&rft_id=info:doi/10.1109/ISPACS.2011.6146073&rft_dat=%3Cieee_6IE%3E6146073%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457721643&rft.eisbn_list=145772166X&rft.eisbn_list=9781457721663&rft.eisbn_list=9781457721649&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6146073&rfr_iscdi=true