Modified Mean-Shift for head tracking

Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daeha Lee, Jaehong Kim, JooChan Sohn
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 849
container_issue
container_start_page 848
container_title
container_volume
creator Daeha Lee
Jaehong Kim
JooChan Sohn
description Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.
doi_str_mv 10.1109/URAI.2011.6146040
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6146040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6146040</ieee_id><sourcerecordid>6146040</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1330-cfd7173f5e730859de032f55acc6ce25df56a292a1d4203cabad1cd75d5deb813</originalsourceid><addsrcrecordid>eNpVjz1LA0EQhldEUOL9ALG5xvLizM7t7m0ZgppAgqCmDpOdWbN-JHKXxn-vYBrf5uFpHniNuUIYI0K8XT1N5mMLiGOPrYcWTkwVQ4etCwGCJTj955bOTTUMb_A776Pv4oW5We6l5KJSL5V3zfO25EOd9329VZb60HN6L7vXS3OW-WPQ6siRWd3fvUxnzeLxYT6dLJqCRNCkLAEDZaeBoHNRFMhm5zgln9Q6yc6zjZZRWguUeMOCSYITJ7rpkEbm-q9bVHX91ZdP7r_Xx3P0A1OWQOc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modified Mean-Shift for head tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Daeha Lee ; Jaehong Kim ; JooChan Sohn</creator><creatorcontrib>Daeha Lee ; Jaehong Kim ; JooChan Sohn</creatorcontrib><description>Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.</description><identifier>ISBN: 9781457707223</identifier><identifier>ISBN: 1457707225</identifier><identifier>EISBN: 9781457707230</identifier><identifier>EISBN: 9781457707216</identifier><identifier>EISBN: 1457707233</identifier><identifier>EISBN: 1457707217</identifier><identifier>DOI: 10.1109/URAI.2011.6146040</identifier><language>eng</language><publisher>IEEE</publisher><subject>Mean shift ; Mean shift tracking ; object detection ; object tracking</subject><ispartof>2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011, p.848-849</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6146040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6146040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daeha Lee</creatorcontrib><creatorcontrib>Jaehong Kim</creatorcontrib><creatorcontrib>JooChan Sohn</creatorcontrib><title>Modified Mean-Shift for head tracking</title><title>2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)</title><addtitle>URAI</addtitle><description>Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.</description><subject>Mean shift</subject><subject>Mean shift tracking</subject><subject>object detection</subject><subject>object tracking</subject><isbn>9781457707223</isbn><isbn>1457707225</isbn><isbn>9781457707230</isbn><isbn>9781457707216</isbn><isbn>1457707233</isbn><isbn>1457707217</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjz1LA0EQhldEUOL9ALG5xvLizM7t7m0ZgppAgqCmDpOdWbN-JHKXxn-vYBrf5uFpHniNuUIYI0K8XT1N5mMLiGOPrYcWTkwVQ4etCwGCJTj955bOTTUMb_A776Pv4oW5We6l5KJSL5V3zfO25EOd9329VZb60HN6L7vXS3OW-WPQ6siRWd3fvUxnzeLxYT6dLJqCRNCkLAEDZaeBoHNRFMhm5zgln9Q6yc6zjZZRWguUeMOCSYITJ7rpkEbm-q9bVHX91ZdP7r_Xx3P0A1OWQOc</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Daeha Lee</creator><creator>Jaehong Kim</creator><creator>JooChan Sohn</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Modified Mean-Shift for head tracking</title><author>Daeha Lee ; Jaehong Kim ; JooChan Sohn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1330-cfd7173f5e730859de032f55acc6ce25df56a292a1d4203cabad1cd75d5deb813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mean shift</topic><topic>Mean shift tracking</topic><topic>object detection</topic><topic>object tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Daeha Lee</creatorcontrib><creatorcontrib>Jaehong Kim</creatorcontrib><creatorcontrib>JooChan Sohn</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daeha Lee</au><au>Jaehong Kim</au><au>JooChan Sohn</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modified Mean-Shift for head tracking</atitle><btitle>2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)</btitle><stitle>URAI</stitle><date>2011-11</date><risdate>2011</risdate><spage>848</spage><epage>849</epage><pages>848-849</pages><isbn>9781457707223</isbn><isbn>1457707225</isbn><eisbn>9781457707230</eisbn><eisbn>9781457707216</eisbn><eisbn>1457707233</eisbn><eisbn>1457707217</eisbn><abstract>Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.</abstract><pub>IEEE</pub><doi>10.1109/URAI.2011.6146040</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457707223
ispartof 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011, p.848-849
issn
language eng
recordid cdi_ieee_primary_6146040
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Mean shift
Mean shift tracking
object detection
object tracking
title Modified Mean-Shift for head tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modified%20Mean-Shift%20for%20head%20tracking&rft.btitle=2011%208th%20International%20Conference%20on%20Ubiquitous%20Robots%20and%20Ambient%20Intelligence%20(URAI)&rft.au=Daeha%20Lee&rft.date=2011-11&rft.spage=848&rft.epage=849&rft.pages=848-849&rft.isbn=9781457707223&rft.isbn_list=1457707225&rft_id=info:doi/10.1109/URAI.2011.6146040&rft_dat=%3Cieee_6IE%3E6146040%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457707230&rft.eisbn_list=9781457707216&rft.eisbn_list=1457707233&rft.eisbn_list=1457707217&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6146040&rfr_iscdi=true