Modified Mean-Shift for head tracking
Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modifie...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 849 |
---|---|
container_issue | |
container_start_page | 848 |
container_title | |
container_volume | |
creator | Daeha Lee Jaehong Kim JooChan Sohn |
description | Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing. |
doi_str_mv | 10.1109/URAI.2011.6146040 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6146040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6146040</ieee_id><sourcerecordid>6146040</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1330-cfd7173f5e730859de032f55acc6ce25df56a292a1d4203cabad1cd75d5deb813</originalsourceid><addsrcrecordid>eNpVjz1LA0EQhldEUOL9ALG5xvLizM7t7m0ZgppAgqCmDpOdWbN-JHKXxn-vYBrf5uFpHniNuUIYI0K8XT1N5mMLiGOPrYcWTkwVQ4etCwGCJTj955bOTTUMb_A776Pv4oW5We6l5KJSL5V3zfO25EOd9329VZb60HN6L7vXS3OW-WPQ6siRWd3fvUxnzeLxYT6dLJqCRNCkLAEDZaeBoHNRFMhm5zgln9Q6yc6zjZZRWguUeMOCSYITJ7rpkEbm-q9bVHX91ZdP7r_Xx3P0A1OWQOc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modified Mean-Shift for head tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Daeha Lee ; Jaehong Kim ; JooChan Sohn</creator><creatorcontrib>Daeha Lee ; Jaehong Kim ; JooChan Sohn</creatorcontrib><description>Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.</description><identifier>ISBN: 9781457707223</identifier><identifier>ISBN: 1457707225</identifier><identifier>EISBN: 9781457707230</identifier><identifier>EISBN: 9781457707216</identifier><identifier>EISBN: 1457707233</identifier><identifier>EISBN: 1457707217</identifier><identifier>DOI: 10.1109/URAI.2011.6146040</identifier><language>eng</language><publisher>IEEE</publisher><subject>Mean shift ; Mean shift tracking ; object detection ; object tracking</subject><ispartof>2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011, p.848-849</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6146040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6146040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daeha Lee</creatorcontrib><creatorcontrib>Jaehong Kim</creatorcontrib><creatorcontrib>JooChan Sohn</creatorcontrib><title>Modified Mean-Shift for head tracking</title><title>2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)</title><addtitle>URAI</addtitle><description>Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.</description><subject>Mean shift</subject><subject>Mean shift tracking</subject><subject>object detection</subject><subject>object tracking</subject><isbn>9781457707223</isbn><isbn>1457707225</isbn><isbn>9781457707230</isbn><isbn>9781457707216</isbn><isbn>1457707233</isbn><isbn>1457707217</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjz1LA0EQhldEUOL9ALG5xvLizM7t7m0ZgppAgqCmDpOdWbN-JHKXxn-vYBrf5uFpHniNuUIYI0K8XT1N5mMLiGOPrYcWTkwVQ4etCwGCJTj955bOTTUMb_A776Pv4oW5We6l5KJSL5V3zfO25EOd9329VZb60HN6L7vXS3OW-WPQ6siRWd3fvUxnzeLxYT6dLJqCRNCkLAEDZaeBoHNRFMhm5zgln9Q6yc6zjZZRWguUeMOCSYITJ7rpkEbm-q9bVHX91ZdP7r_Xx3P0A1OWQOc</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Daeha Lee</creator><creator>Jaehong Kim</creator><creator>JooChan Sohn</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Modified Mean-Shift for head tracking</title><author>Daeha Lee ; Jaehong Kim ; JooChan Sohn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1330-cfd7173f5e730859de032f55acc6ce25df56a292a1d4203cabad1cd75d5deb813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mean shift</topic><topic>Mean shift tracking</topic><topic>object detection</topic><topic>object tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Daeha Lee</creatorcontrib><creatorcontrib>Jaehong Kim</creatorcontrib><creatorcontrib>JooChan Sohn</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daeha Lee</au><au>Jaehong Kim</au><au>JooChan Sohn</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modified Mean-Shift for head tracking</atitle><btitle>2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)</btitle><stitle>URAI</stitle><date>2011-11</date><risdate>2011</risdate><spage>848</spage><epage>849</epage><pages>848-849</pages><isbn>9781457707223</isbn><isbn>1457707225</isbn><eisbn>9781457707230</eisbn><eisbn>9781457707216</eisbn><eisbn>1457707233</eisbn><eisbn>1457707217</eisbn><abstract>Mean-Shift algorithm has been applied mode seeking, image segmentation and object tracking. It is famous for fast convergence within limited boundary. But once exit that boundary, it fails to find correct region and position. We applied mean-shift algorithm in object tracking, and we suggest modified mean-shift tracking method. Using this modified version, we can track object without failing.</abstract><pub>IEEE</pub><doi>10.1109/URAI.2011.6146040</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457707223 |
ispartof | 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2011, p.848-849 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6146040 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Mean shift Mean shift tracking object detection object tracking |
title | Modified Mean-Shift for head tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modified%20Mean-Shift%20for%20head%20tracking&rft.btitle=2011%208th%20International%20Conference%20on%20Ubiquitous%20Robots%20and%20Ambient%20Intelligence%20(URAI)&rft.au=Daeha%20Lee&rft.date=2011-11&rft.spage=848&rft.epage=849&rft.pages=848-849&rft.isbn=9781457707223&rft.isbn_list=1457707225&rft_id=info:doi/10.1109/URAI.2011.6146040&rft_dat=%3Cieee_6IE%3E6146040%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457707230&rft.eisbn_list=9781457707216&rft.eisbn_list=1457707233&rft.eisbn_list=1457707217&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6146040&rfr_iscdi=true |