A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor
This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2012-03, Vol.59 (3), p.183-187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 3 |
container_start_page | 183 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 59 |
creator | Chan, S. C. Chu, Y. J. |
description | This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations. |
doi_str_mv | 10.1109/TCSII.2012.2184374 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6145625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6145625</ieee_id><sourcerecordid>2613899571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC-LJy-pO_uZPZZiNVAU26rHZZNMYkra1E2C6K83tcWDl5mBed5heILgEugIgJrb5WQRxyNGgY0YRIJrcRQMQMoo5NrA8W4WJtRa6NPgrGlWlDJDORsE8Zg84idZtK7FcI5FVzlffmNGnufz2YKMq6L2Zfu-Jm99JY689muXVEimtS-wbctNQaYubWt_Hpzkrmrw4tCHwcv0bjl5CGdP9_FkPAtTznQbCpdrNFQmRkrJo5QpkUsBGaiIJizFVDHQkWAMmOFURVmuE2OiJEtBGsWRD4Ob_d2trz86bFq7LpsUq8ptsO4aC0qD0BEF6NHrf-iq7vym_84aZoAbpngPsT2U-rppPOZ268u1818WqN3Jtb9y7U6uPcjtQ1f7UImIfwEFQiom-Q_c03Kv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>929139263</pqid></control><display><type>article</type><title>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, S. C. ; Chu, Y. J.</creator><creatorcontrib>Chan, S. C. ; Chu, Y. J.</creatorcontrib><description>This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2012.2184374</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Convergence ; Errors ; Hardware ; Least squares approximation ; Performance enhancement ; QR decomposition (QRD) ; recursive least squares (RLS) ; Robustness ; Signal processing algorithms ; Signal to noise ratio ; Steady-state ; Studies ; Tracking ; variable forgetting factor (VFF) ; variable regularization ; Vectors</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2012-03, Vol.59 (3), p.183-187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</citedby><cites>FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6145625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6145625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Chu, Y. J.</creatorcontrib><title>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Errors</subject><subject>Hardware</subject><subject>Least squares approximation</subject><subject>Performance enhancement</subject><subject>QR decomposition (QRD)</subject><subject>recursive least squares (RLS)</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Tracking</subject><subject>variable forgetting factor (VFF)</subject><subject>variable regularization</subject><subject>Vectors</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC-LJy-pO_uZPZZiNVAU26rHZZNMYkra1E2C6K83tcWDl5mBed5heILgEugIgJrb5WQRxyNGgY0YRIJrcRQMQMoo5NrA8W4WJtRa6NPgrGlWlDJDORsE8Zg84idZtK7FcI5FVzlffmNGnufz2YKMq6L2Zfu-Jm99JY689muXVEimtS-wbctNQaYubWt_Hpzkrmrw4tCHwcv0bjl5CGdP9_FkPAtTznQbCpdrNFQmRkrJo5QpkUsBGaiIJizFVDHQkWAMmOFURVmuE2OiJEtBGsWRD4Ob_d2trz86bFq7LpsUq8ptsO4aC0qD0BEF6NHrf-iq7vym_84aZoAbpngPsT2U-rppPOZ268u1818WqN3Jtb9y7U6uPcjtQ1f7UImIfwEFQiom-Q_c03Kv</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Chan, S. C.</creator><creator>Chu, Y. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201203</creationdate><title>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</title><author>Chan, S. C. ; Chu, Y. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Errors</topic><topic>Hardware</topic><topic>Least squares approximation</topic><topic>Performance enhancement</topic><topic>QR decomposition (QRD)</topic><topic>recursive least squares (RLS)</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Tracking</topic><topic>variable forgetting factor (VFF)</topic><topic>variable regularization</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Chu, Y. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, S. C.</au><au>Chu, Y. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2012-03</date><risdate>2012</risdate><volume>59</volume><issue>3</issue><spage>183</spage><epage>187</epage><pages>183-187</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2012.2184374</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2012-03, Vol.59 (3), p.183-187 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_6145625 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Algorithms Convergence Errors Hardware Least squares approximation Performance enhancement QR decomposition (QRD) recursive least squares (RLS) Robustness Signal processing algorithms Signal to noise ratio Steady-state Studies Tracking variable forgetting factor (VFF) variable regularization Vectors |
title | A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20State-Regularized%20QRRLS%20Algorithm%20With%20a%20Variable%20Forgetting%20Factor&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chan,%20S.%20C.&rft.date=2012-03&rft.volume=59&rft.issue=3&rft.spage=183&rft.epage=187&rft.pages=183-187&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2012.2184374&rft_dat=%3Cproquest_RIE%3E2613899571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=929139263&rft_id=info:pmid/&rft_ieee_id=6145625&rfr_iscdi=true |