A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor

This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2012-03, Vol.59 (3), p.183-187
Hauptverfasser: Chan, S. C., Chu, Y. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 3
container_start_page 183
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 59
creator Chan, S. C.
Chu, Y. J.
description This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.
doi_str_mv 10.1109/TCSII.2012.2184374
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6145625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6145625</ieee_id><sourcerecordid>2613899571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKt_QC-LJy-pO_uZPZZiNVAU26rHZZNMYkra1E2C6K83tcWDl5mBed5heILgEugIgJrb5WQRxyNGgY0YRIJrcRQMQMoo5NrA8W4WJtRa6NPgrGlWlDJDORsE8Zg84idZtK7FcI5FVzlffmNGnufz2YKMq6L2Zfu-Jm99JY689muXVEimtS-wbctNQaYubWt_Hpzkrmrw4tCHwcv0bjl5CGdP9_FkPAtTznQbCpdrNFQmRkrJo5QpkUsBGaiIJizFVDHQkWAMmOFURVmuE2OiJEtBGsWRD4Ob_d2trz86bFq7LpsUq8ptsO4aC0qD0BEF6NHrf-iq7vym_84aZoAbpngPsT2U-rppPOZ268u1818WqN3Jtb9y7U6uPcjtQ1f7UImIfwEFQiom-Q_c03Kv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>929139263</pqid></control><display><type>article</type><title>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, S. C. ; Chu, Y. J.</creator><creatorcontrib>Chan, S. C. ; Chu, Y. J.</creatorcontrib><description>This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2012.2184374</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithms ; Convergence ; Errors ; Hardware ; Least squares approximation ; Performance enhancement ; QR decomposition (QRD) ; recursive least squares (RLS) ; Robustness ; Signal processing algorithms ; Signal to noise ratio ; Steady-state ; Studies ; Tracking ; variable forgetting factor (VFF) ; variable regularization ; Vectors</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2012-03, Vol.59 (3), p.183-187</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</citedby><cites>FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6145625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6145625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Chu, Y. J.</creatorcontrib><title>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Errors</subject><subject>Hardware</subject><subject>Least squares approximation</subject><subject>Performance enhancement</subject><subject>QR decomposition (QRD)</subject><subject>recursive least squares (RLS)</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Steady-state</subject><subject>Studies</subject><subject>Tracking</subject><subject>variable forgetting factor (VFF)</subject><subject>variable regularization</subject><subject>Vectors</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKt_QC-LJy-pO_uZPZZiNVAU26rHZZNMYkra1E2C6K83tcWDl5mBed5heILgEugIgJrb5WQRxyNGgY0YRIJrcRQMQMoo5NrA8W4WJtRa6NPgrGlWlDJDORsE8Zg84idZtK7FcI5FVzlffmNGnufz2YKMq6L2Zfu-Jm99JY689muXVEimtS-wbctNQaYubWt_Hpzkrmrw4tCHwcv0bjl5CGdP9_FkPAtTznQbCpdrNFQmRkrJo5QpkUsBGaiIJizFVDHQkWAMmOFURVmuE2OiJEtBGsWRD4Ob_d2trz86bFq7LpsUq8ptsO4aC0qD0BEF6NHrf-iq7vym_84aZoAbpngPsT2U-rppPOZ268u1818WqN3Jtb9y7U6uPcjtQ1f7UImIfwEFQiom-Q_c03Kv</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Chan, S. C.</creator><creator>Chu, Y. J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201203</creationdate><title>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</title><author>Chan, S. C. ; Chu, Y. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-4af7e905b955538c264f541d1680b2cec621784221293068df7b998bdc15963e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Errors</topic><topic>Hardware</topic><topic>Least squares approximation</topic><topic>Performance enhancement</topic><topic>QR decomposition (QRD)</topic><topic>recursive least squares (RLS)</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Steady-state</topic><topic>Studies</topic><topic>Tracking</topic><topic>variable forgetting factor (VFF)</topic><topic>variable regularization</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, S. C.</creatorcontrib><creatorcontrib>Chu, Y. J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, S. C.</au><au>Chu, Y. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2012-03</date><risdate>2012</risdate><volume>59</volume><issue>3</issue><spage>183</spage><epage>187</epage><pages>183-187</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief proposes a new state-regularized (SR) and QR-decomposition-based (QRD) recursive least squares (RLS) adaptive filtering algorithm with a variable forgetting factor (VFF). It employs the estimated coefficients as prior information to minimize the exponentially weighted observation error, which leads to reduced variance over a conventional RLS algorithm and reduced bias over an L 2 -regularized RLS algorithm. To improve the tracking performance, a new measure of convergence status is introduced in controlling the forgetting factor. Consequently, the resultant SR-VFF-RLS algorithm stabilizes the update and adaptively selects the number of measurements by means of the VFF. Improved tracking performance, steady-state mean-square error, and robustness to power-varying inputs over conventional RLS algorithms can be achieved. Furthermore, the proposed algorithm can be implemented using QRD, which leads to a lower roundoff error and more efficient hardware realization than the direct implementation. The effectiveness of the proposed algorithm is demonstrated by computer simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2012.2184374</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2012-03, Vol.59 (3), p.183-187
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_6145625
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Algorithms
Convergence
Errors
Hardware
Least squares approximation
Performance enhancement
QR decomposition (QRD)
recursive least squares (RLS)
Robustness
Signal processing algorithms
Signal to noise ratio
Steady-state
Studies
Tracking
variable forgetting factor (VFF)
variable regularization
Vectors
title A New State-Regularized QRRLS Algorithm With a Variable Forgetting Factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20State-Regularized%20QRRLS%20Algorithm%20With%20a%20Variable%20Forgetting%20Factor&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chan,%20S.%20C.&rft.date=2012-03&rft.volume=59&rft.issue=3&rft.spage=183&rft.epage=187&rft.pages=183-187&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2012.2184374&rft_dat=%3Cproquest_RIE%3E2613899571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=929139263&rft_id=info:pmid/&rft_ieee_id=6145625&rfr_iscdi=true