Biologically inspired UAV obstacle avoidance and control using monocular optical flow & divergence templates

This paper describes a biologically inspired flight control strategy for unpiloted aerial vehicles (UAVs) using optical flow and depth information. The scene depth map is generated by measurement of optical flow in a uniform grid across the image. Grid regions are each analyzed singularly, each ones...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stowers, J., Hayes, M., Bainbridge-Smith, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue
container_start_page 378
container_title
container_volume
creator Stowers, J.
Hayes, M.
Bainbridge-Smith, A.
description This paper describes a biologically inspired flight control strategy for unpiloted aerial vehicles (UAVs) using optical flow and depth information. The scene depth map is generated by measurement of optical flow in a uniform grid across the image. Grid regions are each analyzed singularly, each ones depth is estimated by comparing their observed motion with the motion of the craft as measured by the inertial measurement unit. Two control processes run simultaneously on the robot, a gross strategy uses divergence of optical flow vectors about the focus of expansion, balancing these according to a predefined divergence template. A fine strategy looks for outliers from the estimated depth map. The sum of these processes generates a control impulse to steer a quadrotor helicopter away from obstacles. The algorithm was tested against ground-truth datasets and real flight. In both situations it was able to control the craft heading and pitch during indoor operation, avoiding both corridor walls and oncoming obstacles.
doi_str_mv 10.1109/ICARA.2011.6144913
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6144913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6144913</ieee_id><sourcerecordid>6144913</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9c7c8297645024b11d262baf3ada9782f33e62e341e9e4182a4d9fa8182d231d3</originalsourceid><addsrcrecordid>eNpVUMFKAzEUjIig1P0BveTkrTUvSTebYy1ahYIg1Wt5Td6WSLpZNttK_94t9uJcZuYwAzOM3YGYAAj7-DaffcwmUgBMStDagrpghTUV6KkxQsnKXP7zVl-zIudvMaAsK2P0DYtPIcW0DQ5jPPLQ5DZ05Pnn7IunTe7RReJ4SMFj4wbVeO5S03cp8n0OzZbvUpPcPmLHU9ufWngd0w9_4D4cqNvSKdXTro3YU75lVzXGTMWZR2z18ryav46X74thzHIcrOjH1hlXSWtKPRVSbwC8LOUGa4UehzWyVopKSUoDWdJQSdTe1lgNyksFXo3Y_V9tIKJ124Uddsf1-SL1CyrLWzY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biologically inspired UAV obstacle avoidance and control using monocular optical flow &amp; divergence templates</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Stowers, J. ; Hayes, M. ; Bainbridge-Smith, A.</creator><creatorcontrib>Stowers, J. ; Hayes, M. ; Bainbridge-Smith, A.</creatorcontrib><description>This paper describes a biologically inspired flight control strategy for unpiloted aerial vehicles (UAVs) using optical flow and depth information. The scene depth map is generated by measurement of optical flow in a uniform grid across the image. Grid regions are each analyzed singularly, each ones depth is estimated by comparing their observed motion with the motion of the craft as measured by the inertial measurement unit. Two control processes run simultaneously on the robot, a gross strategy uses divergence of optical flow vectors about the focus of expansion, balancing these according to a predefined divergence template. A fine strategy looks for outliers from the estimated depth map. The sum of these processes generates a control impulse to steer a quadrotor helicopter away from obstacles. The algorithm was tested against ground-truth datasets and real flight. In both situations it was able to control the craft heading and pitch during indoor operation, avoiding both corridor walls and oncoming obstacles.</description><identifier>ISBN: 9781457703294</identifier><identifier>ISBN: 1457703297</identifier><identifier>EISBN: 9781457703287</identifier><identifier>EISBN: 9781457703300</identifier><identifier>EISBN: 1457703300</identifier><identifier>EISBN: 1457703289</identifier><identifier>DOI: 10.1109/ICARA.2011.6144913</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical optical imaging ; Cameras ; Force ; Optical imaging ; Optical sensors ; Process control ; Robots</subject><ispartof>The 5th International Conference on Automation, Robotics and Applications, 2011, p.378-383</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6144913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6144913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stowers, J.</creatorcontrib><creatorcontrib>Hayes, M.</creatorcontrib><creatorcontrib>Bainbridge-Smith, A.</creatorcontrib><title>Biologically inspired UAV obstacle avoidance and control using monocular optical flow &amp; divergence templates</title><title>The 5th International Conference on Automation, Robotics and Applications</title><addtitle>ICARA</addtitle><description>This paper describes a biologically inspired flight control strategy for unpiloted aerial vehicles (UAVs) using optical flow and depth information. The scene depth map is generated by measurement of optical flow in a uniform grid across the image. Grid regions are each analyzed singularly, each ones depth is estimated by comparing their observed motion with the motion of the craft as measured by the inertial measurement unit. Two control processes run simultaneously on the robot, a gross strategy uses divergence of optical flow vectors about the focus of expansion, balancing these according to a predefined divergence template. A fine strategy looks for outliers from the estimated depth map. The sum of these processes generates a control impulse to steer a quadrotor helicopter away from obstacles. The algorithm was tested against ground-truth datasets and real flight. In both situations it was able to control the craft heading and pitch during indoor operation, avoiding both corridor walls and oncoming obstacles.</description><subject>Biomedical optical imaging</subject><subject>Cameras</subject><subject>Force</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>Process control</subject><subject>Robots</subject><isbn>9781457703294</isbn><isbn>1457703297</isbn><isbn>9781457703287</isbn><isbn>9781457703300</isbn><isbn>1457703300</isbn><isbn>1457703289</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMFKAzEUjIig1P0BveTkrTUvSTebYy1ahYIg1Wt5Td6WSLpZNttK_94t9uJcZuYwAzOM3YGYAAj7-DaffcwmUgBMStDagrpghTUV6KkxQsnKXP7zVl-zIudvMaAsK2P0DYtPIcW0DQ5jPPLQ5DZ05Pnn7IunTe7RReJ4SMFj4wbVeO5S03cp8n0OzZbvUpPcPmLHU9ufWngd0w9_4D4cqNvSKdXTro3YU75lVzXGTMWZR2z18ryav46X74thzHIcrOjH1hlXSWtKPRVSbwC8LOUGa4UehzWyVopKSUoDWdJQSdTe1lgNyksFXo3Y_V9tIKJ124Uddsf1-SL1CyrLWzY</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Stowers, J.</creator><creator>Hayes, M.</creator><creator>Bainbridge-Smith, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Biologically inspired UAV obstacle avoidance and control using monocular optical flow &amp; divergence templates</title><author>Stowers, J. ; Hayes, M. ; Bainbridge-Smith, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9c7c8297645024b11d262baf3ada9782f33e62e341e9e4182a4d9fa8182d231d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomedical optical imaging</topic><topic>Cameras</topic><topic>Force</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>Process control</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Stowers, J.</creatorcontrib><creatorcontrib>Hayes, M.</creatorcontrib><creatorcontrib>Bainbridge-Smith, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stowers, J.</au><au>Hayes, M.</au><au>Bainbridge-Smith, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biologically inspired UAV obstacle avoidance and control using monocular optical flow &amp; divergence templates</atitle><btitle>The 5th International Conference on Automation, Robotics and Applications</btitle><stitle>ICARA</stitle><date>2011-12</date><risdate>2011</risdate><spage>378</spage><epage>383</epage><pages>378-383</pages><isbn>9781457703294</isbn><isbn>1457703297</isbn><eisbn>9781457703287</eisbn><eisbn>9781457703300</eisbn><eisbn>1457703300</eisbn><eisbn>1457703289</eisbn><abstract>This paper describes a biologically inspired flight control strategy for unpiloted aerial vehicles (UAVs) using optical flow and depth information. The scene depth map is generated by measurement of optical flow in a uniform grid across the image. Grid regions are each analyzed singularly, each ones depth is estimated by comparing their observed motion with the motion of the craft as measured by the inertial measurement unit. Two control processes run simultaneously on the robot, a gross strategy uses divergence of optical flow vectors about the focus of expansion, balancing these according to a predefined divergence template. A fine strategy looks for outliers from the estimated depth map. The sum of these processes generates a control impulse to steer a quadrotor helicopter away from obstacles. The algorithm was tested against ground-truth datasets and real flight. In both situations it was able to control the craft heading and pitch during indoor operation, avoiding both corridor walls and oncoming obstacles.</abstract><pub>IEEE</pub><doi>10.1109/ICARA.2011.6144913</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457703294
ispartof The 5th International Conference on Automation, Robotics and Applications, 2011, p.378-383
issn
language eng
recordid cdi_ieee_primary_6144913
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical optical imaging
Cameras
Force
Optical imaging
Optical sensors
Process control
Robots
title Biologically inspired UAV obstacle avoidance and control using monocular optical flow & divergence templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biologically%20inspired%20UAV%20obstacle%20avoidance%20and%20control%20using%20monocular%20optical%20flow%20&%20divergence%20templates&rft.btitle=The%205th%20International%20Conference%20on%20Automation,%20Robotics%20and%20Applications&rft.au=Stowers,%20J.&rft.date=2011-12&rft.spage=378&rft.epage=383&rft.pages=378-383&rft.isbn=9781457703294&rft.isbn_list=1457703297&rft_id=info:doi/10.1109/ICARA.2011.6144913&rft_dat=%3Cieee_6IE%3E6144913%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457703287&rft.eisbn_list=9781457703300&rft.eisbn_list=1457703300&rft.eisbn_list=1457703289&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6144913&rfr_iscdi=true