Hand pose identification from monocular image for sign language recognition
In this paper, a novel approach for hand pose recognition is proposed by analyzing the textures and key geometrical features of the hand. A skeletal hand model is constructed to analyze the abduction/adduction movements of the fingers and subsequently, texture analysis is performed to consider some...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | |
container_start_page | 378 |
container_title | |
container_volume | |
creator | Bhuyan, M. K. Kar, M. K. Neog, D. R. |
description | In this paper, a novel approach for hand pose recognition is proposed by analyzing the textures and key geometrical features of the hand. A skeletal hand model is constructed to analyze the abduction/adduction movements of the fingers and subsequently, texture analysis is performed to consider some inflexive finger movements. Probabilistic distributions of the geometric features are considered for modelling intra-class abduction/adduction variations. Gestures differing in inflexive positions of fingers are classified based on Homogeneous Texture Descriptors (HTD), where the texture region is characterized using the mean energy and energy deviation from a set of frequency channels. Similarity measures are computed between input gestures and pre-modelled gesture patterns from a database by considering intra class abduction/adduction angle variations and inter class inflexive variations. Experimental results show the efficacy of our proposed hand pose recognition system. |
doi_str_mv | 10.1109/ICSIPA.2011.6144163 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6144163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6144163</ieee_id><sourcerecordid>6144163</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7aa81cceb091f49f14a0eddd3cb9b13a14526b02eb9dcf2f77fb99bd53fcc5a3</originalsourceid><addsrcrecordid>eNpVUM1qwzAY8xiDjS5P0ItfIJk_27HrYwnbGlrYoLsX_waPxC5JetjbL2W9TBchgYQQQmsgFQBRL21zbD-3FSUAlQDOQbA7VCi5AV5LSSin4v6fZuwRFdP0TRYIoaQiT2i_08nhc548js6nOYZo9RxzwmHMAx5yyvbS6xHHQXcehzziKXYJ9zp1l6szepu7FK-RZ_QQdD_54sYrdHx7_Wp25eHjvW22hzIqMpdS6w1Y6w1RELgKwDXxzjlmjTLA9LKWCkOoN8rZQIOUwShlXM2CtbVmK7T-a43e-9N5XIaNP6fbAewX795REA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hand pose identification from monocular image for sign language recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bhuyan, M. K. ; Kar, M. K. ; Neog, D. R.</creator><creatorcontrib>Bhuyan, M. K. ; Kar, M. K. ; Neog, D. R.</creatorcontrib><description>In this paper, a novel approach for hand pose recognition is proposed by analyzing the textures and key geometrical features of the hand. A skeletal hand model is constructed to analyze the abduction/adduction movements of the fingers and subsequently, texture analysis is performed to consider some inflexive finger movements. Probabilistic distributions of the geometric features are considered for modelling intra-class abduction/adduction variations. Gestures differing in inflexive positions of fingers are classified based on Homogeneous Texture Descriptors (HTD), where the texture region is characterized using the mean energy and energy deviation from a set of frequency channels. Similarity measures are computed between input gestures and pre-modelled gesture patterns from a database by considering intra class abduction/adduction angle variations and inter class inflexive variations. Experimental results show the efficacy of our proposed hand pose recognition system.</description><identifier>ISBN: 9781457702433</identifier><identifier>ISBN: 1457702436</identifier><identifier>EISBN: 9781457702426</identifier><identifier>EISBN: 9781457702419</identifier><identifier>EISBN: 1457702428</identifier><identifier>EISBN: 145770241X</identifier><identifier>DOI: 10.1109/ICSIPA.2011.6144163</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Feature extraction ; Geometrical features ; Homogeneous texture descriptors ; Joints ; Mathematical model ; Proximity measure ; Solid modeling ; Three dimensional displays ; Thumb</subject><ispartof>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, p.378-383</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6144163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6144163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhuyan, M. K.</creatorcontrib><creatorcontrib>Kar, M. K.</creatorcontrib><creatorcontrib>Neog, D. R.</creatorcontrib><title>Hand pose identification from monocular image for sign language recognition</title><title>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)</title><addtitle>ICSIPA</addtitle><description>In this paper, a novel approach for hand pose recognition is proposed by analyzing the textures and key geometrical features of the hand. A skeletal hand model is constructed to analyze the abduction/adduction movements of the fingers and subsequently, texture analysis is performed to consider some inflexive finger movements. Probabilistic distributions of the geometric features are considered for modelling intra-class abduction/adduction variations. Gestures differing in inflexive positions of fingers are classified based on Homogeneous Texture Descriptors (HTD), where the texture region is characterized using the mean energy and energy deviation from a set of frequency channels. Similarity measures are computed between input gestures and pre-modelled gesture patterns from a database by considering intra class abduction/adduction angle variations and inter class inflexive variations. Experimental results show the efficacy of our proposed hand pose recognition system.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Geometrical features</subject><subject>Homogeneous texture descriptors</subject><subject>Joints</subject><subject>Mathematical model</subject><subject>Proximity measure</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><subject>Thumb</subject><isbn>9781457702433</isbn><isbn>1457702436</isbn><isbn>9781457702426</isbn><isbn>9781457702419</isbn><isbn>1457702428</isbn><isbn>145770241X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1qwzAY8xiDjS5P0ItfIJk_27HrYwnbGlrYoLsX_waPxC5JetjbL2W9TBchgYQQQmsgFQBRL21zbD-3FSUAlQDOQbA7VCi5AV5LSSin4v6fZuwRFdP0TRYIoaQiT2i_08nhc548js6nOYZo9RxzwmHMAx5yyvbS6xHHQXcehzziKXYJ9zp1l6szepu7FK-RZ_QQdD_54sYrdHx7_Wp25eHjvW22hzIqMpdS6w1Y6w1RELgKwDXxzjlmjTLA9LKWCkOoN8rZQIOUwShlXM2CtbVmK7T-a43e-9N5XIaNP6fbAewX795REA</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Bhuyan, M. K.</creator><creator>Kar, M. K.</creator><creator>Neog, D. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Hand pose identification from monocular image for sign language recognition</title><author>Bhuyan, M. K. ; Kar, M. K. ; Neog, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7aa81cceb091f49f14a0eddd3cb9b13a14526b02eb9dcf2f77fb99bd53fcc5a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Geometrical features</topic><topic>Homogeneous texture descriptors</topic><topic>Joints</topic><topic>Mathematical model</topic><topic>Proximity measure</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><topic>Thumb</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhuyan, M. K.</creatorcontrib><creatorcontrib>Kar, M. K.</creatorcontrib><creatorcontrib>Neog, D. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhuyan, M. K.</au><au>Kar, M. K.</au><au>Neog, D. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hand pose identification from monocular image for sign language recognition</atitle><btitle>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)</btitle><stitle>ICSIPA</stitle><date>2011-11</date><risdate>2011</risdate><spage>378</spage><epage>383</epage><pages>378-383</pages><isbn>9781457702433</isbn><isbn>1457702436</isbn><eisbn>9781457702426</eisbn><eisbn>9781457702419</eisbn><eisbn>1457702428</eisbn><eisbn>145770241X</eisbn><abstract>In this paper, a novel approach for hand pose recognition is proposed by analyzing the textures and key geometrical features of the hand. A skeletal hand model is constructed to analyze the abduction/adduction movements of the fingers and subsequently, texture analysis is performed to consider some inflexive finger movements. Probabilistic distributions of the geometric features are considered for modelling intra-class abduction/adduction variations. Gestures differing in inflexive positions of fingers are classified based on Homogeneous Texture Descriptors (HTD), where the texture region is characterized using the mean energy and energy deviation from a set of frequency channels. Similarity measures are computed between input gestures and pre-modelled gesture patterns from a database by considering intra class abduction/adduction angle variations and inter class inflexive variations. Experimental results show the efficacy of our proposed hand pose recognition system.</abstract><pub>IEEE</pub><doi>10.1109/ICSIPA.2011.6144163</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457702433 |
ispartof | 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, p.378-383 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6144163 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Feature extraction Geometrical features Homogeneous texture descriptors Joints Mathematical model Proximity measure Solid modeling Three dimensional displays Thumb |
title | Hand pose identification from monocular image for sign language recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hand%20pose%20identification%20from%20monocular%20image%20for%20sign%20language%20recognition&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Signal%20and%20Image%20Processing%20Applications%20(ICSIPA)&rft.au=Bhuyan,%20M.%20K.&rft.date=2011-11&rft.spage=378&rft.epage=383&rft.pages=378-383&rft.isbn=9781457702433&rft.isbn_list=1457702436&rft_id=info:doi/10.1109/ICSIPA.2011.6144163&rft_dat=%3Cieee_6IE%3E6144163%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702426&rft.eisbn_list=9781457702419&rft.eisbn_list=1457702428&rft.eisbn_list=145770241X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6144163&rfr_iscdi=true |