Video-based face recognition using Exemplar-Driven Bayesian Network classifier
Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a no...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | |
container_start_page | 372 |
container_title | |
container_volume | |
creator | See, J. Fauzi, M. F. A. Eswaran, C. |
description | Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method. |
doi_str_mv | 10.1109/ICSIPA.2011.6144128 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6144128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6144128</ieee_id><sourcerecordid>6144128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3f5fe1a40289a7437534c7d9935c4a6c930379a7d7f9863102711dade493a48d3</originalsourceid><addsrcrecordid>eNpVkMtKAzEYhSMiKHWeoJu8wIy5TTJZ1rFqoVTB4rb8Jn9KdDpTkvHSt7dgN57N4ePAtziETDmrOGf2ZtG-LJ5nlWCcV5orxUVzRgprGq5qY5hQQp__YykvSZHzOztGa2ssuyKr1-hxKN8go6cBHNKEbtj2cYxDTz9z7Ld0_oO7fQepvEvxC3t6CwfMEXq6wvF7SB_UdZBzDBHTNbkI0GUsTj0h6_v5un0sl08Pi3a2LKNlYylDHZCDYqKxYJQ0tVTOeGtl7RRoZyWT5rh4E2yjJWfCcO7Bo7ISVOPlhEz_tBERN_sUd5AOm9MJ8hegPE_j</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>See, J. ; Fauzi, M. F. A. ; Eswaran, C.</creator><creatorcontrib>See, J. ; Fauzi, M. F. A. ; Eswaran, C.</creatorcontrib><description>Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.</description><identifier>ISBN: 9781457702433</identifier><identifier>ISBN: 1457702436</identifier><identifier>EISBN: 9781457702426</identifier><identifier>EISBN: 9781457702419</identifier><identifier>EISBN: 1457702428</identifier><identifier>EISBN: 145770241X</identifier><identifier>DOI: 10.1109/ICSIPA.2011.6144128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Face ; Face recognition ; Hidden Markov models ; Probabilistic logic ; Training ; Video sequences</subject><ispartof>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, p.372-377</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6144128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6144128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>See, J.</creatorcontrib><creatorcontrib>Fauzi, M. F. A.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><title>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</title><title>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)</title><addtitle>ICSIPA</addtitle><description>Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.</description><subject>Bayesian methods</subject><subject>Face</subject><subject>Face recognition</subject><subject>Hidden Markov models</subject><subject>Probabilistic logic</subject><subject>Training</subject><subject>Video sequences</subject><isbn>9781457702433</isbn><isbn>1457702436</isbn><isbn>9781457702426</isbn><isbn>9781457702419</isbn><isbn>1457702428</isbn><isbn>145770241X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYhSMiKHWeoJu8wIy5TTJZ1rFqoVTB4rb8Jn9KdDpTkvHSt7dgN57N4ePAtziETDmrOGf2ZtG-LJ5nlWCcV5orxUVzRgprGq5qY5hQQp__YykvSZHzOztGa2ssuyKr1-hxKN8go6cBHNKEbtj2cYxDTz9z7Ld0_oO7fQepvEvxC3t6CwfMEXq6wvF7SB_UdZBzDBHTNbkI0GUsTj0h6_v5un0sl08Pi3a2LKNlYylDHZCDYqKxYJQ0tVTOeGtl7RRoZyWT5rh4E2yjJWfCcO7Bo7ISVOPlhEz_tBERN_sUd5AOm9MJ8hegPE_j</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>See, J.</creator><creator>Fauzi, M. F. A.</creator><creator>Eswaran, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</title><author>See, J. ; Fauzi, M. F. A. ; Eswaran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3f5fe1a40289a7437534c7d9935c4a6c930379a7d7f9863102711dade493a48d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Face</topic><topic>Face recognition</topic><topic>Hidden Markov models</topic><topic>Probabilistic logic</topic><topic>Training</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>See, J.</creatorcontrib><creatorcontrib>Fauzi, M. F. A.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>See, J.</au><au>Fauzi, M. F. A.</au><au>Eswaran, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</atitle><btitle>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)</btitle><stitle>ICSIPA</stitle><date>2011-11</date><risdate>2011</risdate><spage>372</spage><epage>377</epage><pages>372-377</pages><isbn>9781457702433</isbn><isbn>1457702436</isbn><eisbn>9781457702426</eisbn><eisbn>9781457702419</eisbn><eisbn>1457702428</eisbn><eisbn>145770241X</eisbn><abstract>Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.</abstract><pub>IEEE</pub><doi>10.1109/ICSIPA.2011.6144128</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457702433 |
ispartof | 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, p.372-377 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6144128 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Face Face recognition Hidden Markov models Probabilistic logic Training Video sequences |
title | Video-based face recognition using Exemplar-Driven Bayesian Network classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video-based%20face%20recognition%20using%20Exemplar-Driven%20Bayesian%20Network%20classifier&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Signal%20and%20Image%20Processing%20Applications%20(ICSIPA)&rft.au=See,%20J.&rft.date=2011-11&rft.spage=372&rft.epage=377&rft.pages=372-377&rft.isbn=9781457702433&rft.isbn_list=1457702436&rft_id=info:doi/10.1109/ICSIPA.2011.6144128&rft_dat=%3Cieee_6IE%3E6144128%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702426&rft.eisbn_list=9781457702419&rft.eisbn_list=1457702428&rft.eisbn_list=145770241X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6144128&rfr_iscdi=true |