Video-based face recognition using Exemplar-Driven Bayesian Network classifier

Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: See, J., Fauzi, M. F. A., Eswaran, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue
container_start_page 372
container_title
container_volume
creator See, J.
Fauzi, M. F. A.
Eswaran, C.
description Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.
doi_str_mv 10.1109/ICSIPA.2011.6144128
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6144128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6144128</ieee_id><sourcerecordid>6144128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3f5fe1a40289a7437534c7d9935c4a6c930379a7d7f9863102711dade493a48d3</originalsourceid><addsrcrecordid>eNpVkMtKAzEYhSMiKHWeoJu8wIy5TTJZ1rFqoVTB4rb8Jn9KdDpTkvHSt7dgN57N4ePAtziETDmrOGf2ZtG-LJ5nlWCcV5orxUVzRgprGq5qY5hQQp__YykvSZHzOztGa2ssuyKr1-hxKN8go6cBHNKEbtj2cYxDTz9z7Ld0_oO7fQepvEvxC3t6CwfMEXq6wvF7SB_UdZBzDBHTNbkI0GUsTj0h6_v5un0sl08Pi3a2LKNlYylDHZCDYqKxYJQ0tVTOeGtl7RRoZyWT5rh4E2yjJWfCcO7Bo7ISVOPlhEz_tBERN_sUd5AOm9MJ8hegPE_j</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>See, J. ; Fauzi, M. F. A. ; Eswaran, C.</creator><creatorcontrib>See, J. ; Fauzi, M. F. A. ; Eswaran, C.</creatorcontrib><description>Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.</description><identifier>ISBN: 9781457702433</identifier><identifier>ISBN: 1457702436</identifier><identifier>EISBN: 9781457702426</identifier><identifier>EISBN: 9781457702419</identifier><identifier>EISBN: 1457702428</identifier><identifier>EISBN: 145770241X</identifier><identifier>DOI: 10.1109/ICSIPA.2011.6144128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Face ; Face recognition ; Hidden Markov models ; Probabilistic logic ; Training ; Video sequences</subject><ispartof>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, p.372-377</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6144128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6144128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>See, J.</creatorcontrib><creatorcontrib>Fauzi, M. F. A.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><title>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</title><title>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)</title><addtitle>ICSIPA</addtitle><description>Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.</description><subject>Bayesian methods</subject><subject>Face</subject><subject>Face recognition</subject><subject>Hidden Markov models</subject><subject>Probabilistic logic</subject><subject>Training</subject><subject>Video sequences</subject><isbn>9781457702433</isbn><isbn>1457702436</isbn><isbn>9781457702426</isbn><isbn>9781457702419</isbn><isbn>1457702428</isbn><isbn>145770241X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKAzEYhSMiKHWeoJu8wIy5TTJZ1rFqoVTB4rb8Jn9KdDpTkvHSt7dgN57N4ePAtziETDmrOGf2ZtG-LJ5nlWCcV5orxUVzRgprGq5qY5hQQp__YykvSZHzOztGa2ssuyKr1-hxKN8go6cBHNKEbtj2cYxDTz9z7Ld0_oO7fQepvEvxC3t6CwfMEXq6wvF7SB_UdZBzDBHTNbkI0GUsTj0h6_v5un0sl08Pi3a2LKNlYylDHZCDYqKxYJQ0tVTOeGtl7RRoZyWT5rh4E2yjJWfCcO7Bo7ISVOPlhEz_tBERN_sUd5AOm9MJ8hegPE_j</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>See, J.</creator><creator>Fauzi, M. F. A.</creator><creator>Eswaran, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</title><author>See, J. ; Fauzi, M. F. A. ; Eswaran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3f5fe1a40289a7437534c7d9935c4a6c930379a7d7f9863102711dade493a48d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Face</topic><topic>Face recognition</topic><topic>Hidden Markov models</topic><topic>Probabilistic logic</topic><topic>Training</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>See, J.</creatorcontrib><creatorcontrib>Fauzi, M. F. A.</creatorcontrib><creatorcontrib>Eswaran, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>See, J.</au><au>Fauzi, M. F. A.</au><au>Eswaran, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video-based face recognition using Exemplar-Driven Bayesian Network classifier</atitle><btitle>2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)</btitle><stitle>ICSIPA</stitle><date>2011-11</date><risdate>2011</risdate><spage>372</spage><epage>377</epage><pages>372-377</pages><isbn>9781457702433</isbn><isbn>1457702436</isbn><eisbn>9781457702426</eisbn><eisbn>9781457702419</eisbn><eisbn>1457702428</eisbn><eisbn>145770241X</eisbn><abstract>Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.</abstract><pub>IEEE</pub><doi>10.1109/ICSIPA.2011.6144128</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457702433
ispartof 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), 2011, p.372-377
issn
language eng
recordid cdi_ieee_primary_6144128
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Face
Face recognition
Hidden Markov models
Probabilistic logic
Training
Video sequences
title Video-based face recognition using Exemplar-Driven Bayesian Network classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video-based%20face%20recognition%20using%20Exemplar-Driven%20Bayesian%20Network%20classifier&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Signal%20and%20Image%20Processing%20Applications%20(ICSIPA)&rft.au=See,%20J.&rft.date=2011-11&rft.spage=372&rft.epage=377&rft.pages=372-377&rft.isbn=9781457702433&rft.isbn_list=1457702436&rft_id=info:doi/10.1109/ICSIPA.2011.6144128&rft_dat=%3Cieee_6IE%3E6144128%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702426&rft.eisbn_list=9781457702419&rft.eisbn_list=1457702428&rft.eisbn_list=145770241X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6144128&rfr_iscdi=true