A Markovian Approach for DEM Estimation From Multiple InSAR Data With Atmospheric Contributions

Accurate digital elevation model (DEM) estimation using synthetic aperture radar interferometry still remains a challenging problem in the geographical information science community, particularly in dealing with a high noise rate and atmospheric disturbances. Such task suffers from the lack of effic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2012-07, Vol.9 (4), p.764-768
Hauptverfasser: Shabou, A., Tupin, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 4
container_start_page 764
container_title IEEE geoscience and remote sensing letters
container_volume 9
creator Shabou, A.
Tupin, F.
description Accurate digital elevation model (DEM) estimation using synthetic aperture radar interferometry still remains a challenging problem in the geographical information science community, particularly in dealing with a high noise rate and atmospheric disturbances. Such task suffers from the lack of efficient and reliable methods to overcome these artifacts. This work provides a method that aims to solve this problem through a Bayesian formulation with the Markovian energy minimization framework. The DEM is generated from a set of multifrequency/multibaseline interferograms using a multichannel phase unwrapping algorithm combined with an estimation method of the atmospheric artifacts. A set of experimental results illustrates the effectiveness and robustness of the proposed approach.
doi_str_mv 10.1109/LGRS.2011.2181326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6143980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6143980</ieee_id><sourcerecordid>1017968621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d1d5825351959ca591d7258e1e7452639e27b3396721c5209e33f8b194f559323</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxU1poGnSDxB6EfTSHrzRSB5LOprN5g_sEkhampvQemVWqddyJTnQb1-LDTn00tMMw-8N7_GK4gLoAoCqy_XNw-OCUYAFAwmc1e-KU0CUJUUB7_NeYYlKPn0oPsb4TCmrpBSnhW7IxoRf_sWZgTTjGLxp96TzgVytNmQVkzuY5PxAroM_kM3UJzf2ltwNj80DuTLJkJ8u7UmTDj6OextcS5Z-SMFtpyyL58VJZ_poP73Os-LH9er78rZc39_cLZt12XLFU7mDHUqGHEGhag0q2AmG0oIVFbKaK8vElnNVCwYtMqos553cgqo6RMUZPyu-Hf_uTa_HMLsOf7Q3Tt82a51vlDFZc5QvMLNfj-yc9vdkY9IHF1vb92awfooaagGcs9nK_1EKQtWyZvnrl3_QZz-FYQ6dqZwNBZ0pOFJt8DEG272ZBapzkzo3qXOT-rXJWfP5qHHW2je-hoorSflfR3eVZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012535570</pqid></control><display><type>article</type><title>A Markovian Approach for DEM Estimation From Multiple InSAR Data With Atmospheric Contributions</title><source>IEEE Electronic Library (IEL)</source><creator>Shabou, A. ; Tupin, F.</creator><creatorcontrib>Shabou, A. ; Tupin, F.</creatorcontrib><description>Accurate digital elevation model (DEM) estimation using synthetic aperture radar interferometry still remains a challenging problem in the geographical information science community, particularly in dealing with a high noise rate and atmospheric disturbances. Such task suffers from the lack of efficient and reliable methods to overcome these artifacts. This work provides a method that aims to solve this problem through a Bayesian formulation with the Markovian energy minimization framework. The DEM is generated from a set of multifrequency/multibaseline interferograms using a multichannel phase unwrapping algorithm combined with an estimation method of the atmospheric artifacts. A set of experimental results illustrates the effectiveness and robustness of the proposed approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2011.2181326</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Atmospheric contributions ; Atmospheric modeling ; Atmospherics ; Bayesian methods ; Computer Science ; Dealing ; Discrete element method ; Disturbances ; Energy of formation ; Estimation ; graph cuts ; Image Processing ; Image reconstruction ; Joints ; multichannel phase unwrapping (PU) (MCPU) ; Optimization ; Surface topography ; Synthetic aperture radar ; synthetic aperture radar (SAR) interferometry (InSAR)</subject><ispartof>IEEE geoscience and remote sensing letters, 2012-07, Vol.9 (4), p.764-768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d1d5825351959ca591d7258e1e7452639e27b3396721c5209e33f8b194f559323</citedby><cites>FETCH-LOGICAL-c393t-d1d5825351959ca591d7258e1e7452639e27b3396721c5209e33f8b194f559323</cites><orcidid>0000-0002-3110-8183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6143980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6143980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://telecom-paris.hal.science/hal-02286358$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shabou, A.</creatorcontrib><creatorcontrib>Tupin, F.</creatorcontrib><title>A Markovian Approach for DEM Estimation From Multiple InSAR Data With Atmospheric Contributions</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Accurate digital elevation model (DEM) estimation using synthetic aperture radar interferometry still remains a challenging problem in the geographical information science community, particularly in dealing with a high noise rate and atmospheric disturbances. Such task suffers from the lack of efficient and reliable methods to overcome these artifacts. This work provides a method that aims to solve this problem through a Bayesian formulation with the Markovian energy minimization framework. The DEM is generated from a set of multifrequency/multibaseline interferograms using a multichannel phase unwrapping algorithm combined with an estimation method of the atmospheric artifacts. A set of experimental results illustrates the effectiveness and robustness of the proposed approach.</description><subject>Algorithms</subject><subject>Atmospheric contributions</subject><subject>Atmospheric modeling</subject><subject>Atmospherics</subject><subject>Bayesian methods</subject><subject>Computer Science</subject><subject>Dealing</subject><subject>Discrete element method</subject><subject>Disturbances</subject><subject>Energy of formation</subject><subject>Estimation</subject><subject>graph cuts</subject><subject>Image Processing</subject><subject>Image reconstruction</subject><subject>Joints</subject><subject>multichannel phase unwrapping (PU) (MCPU)</subject><subject>Optimization</subject><subject>Surface topography</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) interferometry (InSAR)</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9r3DAQxU1poGnSDxB6EfTSHrzRSB5LOprN5g_sEkhampvQemVWqddyJTnQb1-LDTn00tMMw-8N7_GK4gLoAoCqy_XNw-OCUYAFAwmc1e-KU0CUJUUB7_NeYYlKPn0oPsb4TCmrpBSnhW7IxoRf_sWZgTTjGLxp96TzgVytNmQVkzuY5PxAroM_kM3UJzf2ltwNj80DuTLJkJ8u7UmTDj6OextcS5Z-SMFtpyyL58VJZ_poP73Os-LH9er78rZc39_cLZt12XLFU7mDHUqGHEGhag0q2AmG0oIVFbKaK8vElnNVCwYtMqos553cgqo6RMUZPyu-Hf_uTa_HMLsOf7Q3Tt82a51vlDFZc5QvMLNfj-yc9vdkY9IHF1vb92awfooaagGcs9nK_1EKQtWyZvnrl3_QZz-FYQ6dqZwNBZ0pOFJt8DEG272ZBapzkzo3qXOT-rXJWfP5qHHW2je-hoorSflfR3eVZg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Shabou, A.</creator><creator>Tupin, F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE - Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TV</scope><scope>F28</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3110-8183</orcidid></search><sort><creationdate>20120701</creationdate><title>A Markovian Approach for DEM Estimation From Multiple InSAR Data With Atmospheric Contributions</title><author>Shabou, A. ; Tupin, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d1d5825351959ca591d7258e1e7452639e27b3396721c5209e33f8b194f559323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Atmospheric contributions</topic><topic>Atmospheric modeling</topic><topic>Atmospherics</topic><topic>Bayesian methods</topic><topic>Computer Science</topic><topic>Dealing</topic><topic>Discrete element method</topic><topic>Disturbances</topic><topic>Energy of formation</topic><topic>Estimation</topic><topic>graph cuts</topic><topic>Image Processing</topic><topic>Image reconstruction</topic><topic>Joints</topic><topic>multichannel phase unwrapping (PU) (MCPU)</topic><topic>Optimization</topic><topic>Surface topography</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) interferometry (InSAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabou, A.</creatorcontrib><creatorcontrib>Tupin, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Pollution Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shabou, A.</au><au>Tupin, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Markovian Approach for DEM Estimation From Multiple InSAR Data With Atmospheric Contributions</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>9</volume><issue>4</issue><spage>764</spage><epage>768</epage><pages>764-768</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Accurate digital elevation model (DEM) estimation using synthetic aperture radar interferometry still remains a challenging problem in the geographical information science community, particularly in dealing with a high noise rate and atmospheric disturbances. Such task suffers from the lack of efficient and reliable methods to overcome these artifacts. This work provides a method that aims to solve this problem through a Bayesian formulation with the Markovian energy minimization framework. The DEM is generated from a set of multifrequency/multibaseline interferograms using a multichannel phase unwrapping algorithm combined with an estimation method of the atmospheric artifacts. A set of experimental results illustrates the effectiveness and robustness of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2011.2181326</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3110-8183</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2012-07, Vol.9 (4), p.764-768
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_6143980
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric contributions
Atmospheric modeling
Atmospherics
Bayesian methods
Computer Science
Dealing
Discrete element method
Disturbances
Energy of formation
Estimation
graph cuts
Image Processing
Image reconstruction
Joints
multichannel phase unwrapping (PU) (MCPU)
Optimization
Surface topography
Synthetic aperture radar
synthetic aperture radar (SAR) interferometry (InSAR)
title A Markovian Approach for DEM Estimation From Multiple InSAR Data With Atmospheric Contributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Markovian%20Approach%20for%20DEM%20Estimation%20From%20Multiple%20InSAR%20Data%20With%20Atmospheric%20Contributions&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Shabou,%20A.&rft.date=2012-07-01&rft.volume=9&rft.issue=4&rft.spage=764&rft.epage=768&rft.pages=764-768&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2011.2181326&rft_dat=%3Cproquest_RIE%3E1017968621%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012535570&rft_id=info:pmid/&rft_ieee_id=6143980&rfr_iscdi=true