Keyword spotting based on the analysis of template matching distances

This paper presents a system for speaker independent keyword spotting (KWS) in continuous speech using a spoken example template. The approach, based on Dynamic Time Warping (DTW) for matching the template to a test utterance, does not require any modelling or training as required in alternative tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barakat, M. S., Ritz, C. H., Stirling, D. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Barakat, M. S.
Ritz, C. H.
Stirling, D. A.
description This paper presents a system for speaker independent keyword spotting (KWS) in continuous speech using a spoken example template. The approach, based on Dynamic Time Warping (DTW) for matching the template to a test utterance, does not require any modelling or training as required in alternative techniques such as the Hidden Markov Model (HMM). This is of particular relevance to applications such as detection of words that have not been adequately represented in a training database (e.g. searching for topical words that are emerging in society). Introduced is the use of the DTW distance histogram for automatic estimation of similarity thresholds for every keyword-utterance pair. Experiments conducted on a wide range of speech sentences and keywords show that when only a few examples of the keyword are available, the proposed system has higher recall ratio than a HMM-based approach.
doi_str_mv 10.1109/ICSPCS.2011.6140822
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6140822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6140822</ieee_id><sourcerecordid>6140822</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-880c11f86d76c579923dee8778a8ad4653bca78dbd2dee3572ab22dfde05e23f3</originalsourceid><addsrcrecordid>eNo9j19LwzAUxSMiqHOfYC_5Aq25SZukj1KmDgcKU_Bt3Da3LtJ_NAHpt3ey4Xk5nB-HA4exFYgUQBT3m3L3Vu5SKQBSDZmwUl6wW8hyYwCs-Lz8D6bQ12wZwrc4SuvCSnXD1i80_wyT42EcYvT9F68wkONDz-OBOPbYzsEHPjQ8Uje2GIl3GOvDX9X5ELGvKdyxqwbbQMuzL9jH4_q9fE62r0-b8mGbeDB5TKwVNUBjtTO6zk1RSOWIrDEWLbpM56qq0VhXOXnkKjcSKyld40jkJFWjFmx12vVEtB8n3-E078-31S_ah00-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Keyword spotting based on the analysis of template matching distances</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barakat, M. S. ; Ritz, C. H. ; Stirling, D. A.</creator><creatorcontrib>Barakat, M. S. ; Ritz, C. H. ; Stirling, D. A.</creatorcontrib><description>This paper presents a system for speaker independent keyword spotting (KWS) in continuous speech using a spoken example template. The approach, based on Dynamic Time Warping (DTW) for matching the template to a test utterance, does not require any modelling or training as required in alternative techniques such as the Hidden Markov Model (HMM). This is of particular relevance to applications such as detection of words that have not been adequately represented in a training database (e.g. searching for topical words that are emerging in society). Introduced is the use of the DTW distance histogram for automatic estimation of similarity thresholds for every keyword-utterance pair. Experiments conducted on a wide range of speech sentences and keywords show that when only a few examples of the keyword are available, the proposed system has higher recall ratio than a HMM-based approach.</description><identifier>ISBN: 1457711796</identifier><identifier>ISBN: 9781457711794</identifier><identifier>EISBN: 145771180X</identifier><identifier>EISBN: 9781457711787</identifier><identifier>EISBN: 1457711788</identifier><identifier>EISBN: 9781457711800</identifier><identifier>DOI: 10.1109/ICSPCS.2011.6140822</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic Speech Recognition ; Dynamic Time Warping (DTW) ; Feature extraction ; Hidden Markov Model (HMM) ; Hidden Markov models ; Histograms ; Keyword Spotting ; Speech ; Training ; Vectors</subject><ispartof>2011 5th International Conference on Signal Processing and Communication Systems (ICSPCS), 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6140822$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6140822$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barakat, M. S.</creatorcontrib><creatorcontrib>Ritz, C. H.</creatorcontrib><creatorcontrib>Stirling, D. A.</creatorcontrib><title>Keyword spotting based on the analysis of template matching distances</title><title>2011 5th International Conference on Signal Processing and Communication Systems (ICSPCS)</title><addtitle>ICSPCS</addtitle><description>This paper presents a system for speaker independent keyword spotting (KWS) in continuous speech using a spoken example template. The approach, based on Dynamic Time Warping (DTW) for matching the template to a test utterance, does not require any modelling or training as required in alternative techniques such as the Hidden Markov Model (HMM). This is of particular relevance to applications such as detection of words that have not been adequately represented in a training database (e.g. searching for topical words that are emerging in society). Introduced is the use of the DTW distance histogram for automatic estimation of similarity thresholds for every keyword-utterance pair. Experiments conducted on a wide range of speech sentences and keywords show that when only a few examples of the keyword are available, the proposed system has higher recall ratio than a HMM-based approach.</description><subject>Automatic Speech Recognition</subject><subject>Dynamic Time Warping (DTW)</subject><subject>Feature extraction</subject><subject>Hidden Markov Model (HMM)</subject><subject>Hidden Markov models</subject><subject>Histograms</subject><subject>Keyword Spotting</subject><subject>Speech</subject><subject>Training</subject><subject>Vectors</subject><isbn>1457711796</isbn><isbn>9781457711794</isbn><isbn>145771180X</isbn><isbn>9781457711787</isbn><isbn>1457711788</isbn><isbn>9781457711800</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j19LwzAUxSMiqHOfYC_5Aq25SZukj1KmDgcKU_Bt3Da3LtJ_NAHpt3ey4Xk5nB-HA4exFYgUQBT3m3L3Vu5SKQBSDZmwUl6wW8hyYwCs-Lz8D6bQ12wZwrc4SuvCSnXD1i80_wyT42EcYvT9F68wkONDz-OBOPbYzsEHPjQ8Uje2GIl3GOvDX9X5ELGvKdyxqwbbQMuzL9jH4_q9fE62r0-b8mGbeDB5TKwVNUBjtTO6zk1RSOWIrDEWLbpM56qq0VhXOXnkKjcSKyld40jkJFWjFmx12vVEtB8n3-E078-31S_ah00-</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Barakat, M. S.</creator><creator>Ritz, C. H.</creator><creator>Stirling, D. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Keyword spotting based on the analysis of template matching distances</title><author>Barakat, M. S. ; Ritz, C. H. ; Stirling, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-880c11f86d76c579923dee8778a8ad4653bca78dbd2dee3572ab22dfde05e23f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Automatic Speech Recognition</topic><topic>Dynamic Time Warping (DTW)</topic><topic>Feature extraction</topic><topic>Hidden Markov Model (HMM)</topic><topic>Hidden Markov models</topic><topic>Histograms</topic><topic>Keyword Spotting</topic><topic>Speech</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Barakat, M. S.</creatorcontrib><creatorcontrib>Ritz, C. H.</creatorcontrib><creatorcontrib>Stirling, D. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barakat, M. S.</au><au>Ritz, C. H.</au><au>Stirling, D. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Keyword spotting based on the analysis of template matching distances</atitle><btitle>2011 5th International Conference on Signal Processing and Communication Systems (ICSPCS)</btitle><stitle>ICSPCS</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1457711796</isbn><isbn>9781457711794</isbn><eisbn>145771180X</eisbn><eisbn>9781457711787</eisbn><eisbn>1457711788</eisbn><eisbn>9781457711800</eisbn><abstract>This paper presents a system for speaker independent keyword spotting (KWS) in continuous speech using a spoken example template. The approach, based on Dynamic Time Warping (DTW) for matching the template to a test utterance, does not require any modelling or training as required in alternative techniques such as the Hidden Markov Model (HMM). This is of particular relevance to applications such as detection of words that have not been adequately represented in a training database (e.g. searching for topical words that are emerging in society). Introduced is the use of the DTW distance histogram for automatic estimation of similarity thresholds for every keyword-utterance pair. Experiments conducted on a wide range of speech sentences and keywords show that when only a few examples of the keyword are available, the proposed system has higher recall ratio than a HMM-based approach.</abstract><pub>IEEE</pub><doi>10.1109/ICSPCS.2011.6140822</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457711796
ispartof 2011 5th International Conference on Signal Processing and Communication Systems (ICSPCS), 2011, p.1-6
issn
language eng
recordid cdi_ieee_primary_6140822
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic Speech Recognition
Dynamic Time Warping (DTW)
Feature extraction
Hidden Markov Model (HMM)
Hidden Markov models
Histograms
Keyword Spotting
Speech
Training
Vectors
title Keyword spotting based on the analysis of template matching distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Keyword%20spotting%20based%20on%20the%20analysis%20of%20template%20matching%20distances&rft.btitle=2011%205th%20International%20Conference%20on%20Signal%20Processing%20and%20Communication%20Systems%20(ICSPCS)&rft.au=Barakat,%20M.%20S.&rft.date=2011-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1457711796&rft.isbn_list=9781457711794&rft_id=info:doi/10.1109/ICSPCS.2011.6140822&rft_dat=%3Cieee_6IE%3E6140822%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=145771180X&rft.eisbn_list=9781457711787&rft.eisbn_list=1457711788&rft.eisbn_list=9781457711800&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6140822&rfr_iscdi=true