Parallel stochastic grammar induction
This paper examines the problem of stochastic grammar induction and gives a formal analysis of observed limitations of a classical algorithm. It then describes a parallel approach to the problem which avoids these limitations. Finally, a proof is presented which shows that a popular training algorit...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1428 vol.3 |
---|---|
container_issue | |
container_start_page | 1424 |
container_title | |
container_volume | 3 |
creator | Kremer, S.C. |
description | This paper examines the problem of stochastic grammar induction and gives a formal analysis of observed limitations of a classical algorithm. It then describes a parallel approach to the problem which avoids these limitations. Finally, a proof is presented which shows that a popular training algorithm already in use for recurrent connectionist networks implements the new approach. |
doi_str_mv | 10.1109/ICNN.1997.614003 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_614003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>614003</ieee_id><sourcerecordid>614003</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-7f829d130c071db13377e11efb36f90de764a544e393c5f9c73ffc711a5654f93</originalsourceid><addsrcrecordid>eNotjzFPwzAQRi1VSEDbHTFlYUx6l7N9uRFFQCtVhaF75To2uEpbFIeBf0-l8i1ve3qfUg8IFSLIYtVuNhWKcGVRA9BE3QM3QBrrurlV85wPcJk2WqzcqacPN7i-D32Rx7P_cnlMvvgc3PHohiKduh8_pvNppm6i63OY_3Oqtq8v23ZZrt_fVu3zukwNjyXHppYOCTwwdnskYg6IIe7JRoEusNXOaB1IyJsonilGz4jOWKOj0FQ9XrUphLD7HtIl4nd3_UF_7Rg8_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel stochastic grammar induction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kremer, S.C.</creator><creatorcontrib>Kremer, S.C.</creatorcontrib><description>This paper examines the problem of stochastic grammar induction and gives a formal analysis of observed limitations of a classical algorithm. It then describes a parallel approach to the problem which avoids these limitations. Finally, a proof is presented which shows that a popular training algorithm already in use for recurrent connectionist networks implements the new approach.</description><identifier>ISBN: 0780341228</identifier><identifier>ISBN: 9780780341227</identifier><identifier>DOI: 10.1109/ICNN.1997.614003</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Bayesian methods ; Character generation ; Distributed computing ; Frequency ; Gold ; Induction generators ; Learning systems ; Stochastic processes ; Stochastic systems</subject><ispartof>Proceedings of International Conference on Neural Networks (ICNN'97), 1997, Vol.3, p.1424-1428 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/614003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/614003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kremer, S.C.</creatorcontrib><title>Parallel stochastic grammar induction</title><title>Proceedings of International Conference on Neural Networks (ICNN'97)</title><addtitle>ICNN</addtitle><description>This paper examines the problem of stochastic grammar induction and gives a formal analysis of observed limitations of a classical algorithm. It then describes a parallel approach to the problem which avoids these limitations. Finally, a proof is presented which shows that a popular training algorithm already in use for recurrent connectionist networks implements the new approach.</description><subject>Algorithm design and analysis</subject><subject>Bayesian methods</subject><subject>Character generation</subject><subject>Distributed computing</subject><subject>Frequency</subject><subject>Gold</subject><subject>Induction generators</subject><subject>Learning systems</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><isbn>0780341228</isbn><isbn>9780780341227</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjzFPwzAQRi1VSEDbHTFlYUx6l7N9uRFFQCtVhaF75To2uEpbFIeBf0-l8i1ve3qfUg8IFSLIYtVuNhWKcGVRA9BE3QM3QBrrurlV85wPcJk2WqzcqacPN7i-D32Rx7P_cnlMvvgc3PHohiKduh8_pvNppm6i63OY_3Oqtq8v23ZZrt_fVu3zukwNjyXHppYOCTwwdnskYg6IIe7JRoEusNXOaB1IyJsonilGz4jOWKOj0FQ9XrUphLD7HtIl4nd3_UF_7Rg8_A</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Kremer, S.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Parallel stochastic grammar induction</title><author>Kremer, S.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-7f829d130c071db13377e11efb36f90de764a544e393c5f9c73ffc711a5654f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algorithm design and analysis</topic><topic>Bayesian methods</topic><topic>Character generation</topic><topic>Distributed computing</topic><topic>Frequency</topic><topic>Gold</topic><topic>Induction generators</topic><topic>Learning systems</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kremer, S.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kremer, S.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel stochastic grammar induction</atitle><btitle>Proceedings of International Conference on Neural Networks (ICNN'97)</btitle><stitle>ICNN</stitle><date>1997</date><risdate>1997</risdate><volume>3</volume><spage>1424</spage><epage>1428 vol.3</epage><pages>1424-1428 vol.3</pages><isbn>0780341228</isbn><isbn>9780780341227</isbn><abstract>This paper examines the problem of stochastic grammar induction and gives a formal analysis of observed limitations of a classical algorithm. It then describes a parallel approach to the problem which avoids these limitations. Finally, a proof is presented which shows that a popular training algorithm already in use for recurrent connectionist networks implements the new approach.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1997.614003</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780341228 |
ispartof | Proceedings of International Conference on Neural Networks (ICNN'97), 1997, Vol.3, p.1424-1428 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_614003 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Bayesian methods Character generation Distributed computing Frequency Gold Induction generators Learning systems Stochastic processes Stochastic systems |
title | Parallel stochastic grammar induction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20stochastic%20grammar%20induction&rft.btitle=Proceedings%20of%20International%20Conference%20on%20Neural%20Networks%20(ICNN'97)&rft.au=Kremer,%20S.C.&rft.date=1997&rft.volume=3&rft.spage=1424&rft.epage=1428%20vol.3&rft.pages=1424-1428%20vol.3&rft.isbn=0780341228&rft.isbn_list=9780780341227&rft_id=info:doi/10.1109/ICNN.1997.614003&rft_dat=%3Cieee_6IE%3E614003%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=614003&rfr_iscdi=true |