Job sequence scheduling for cloud computing
This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | |
container_start_page | 212 |
container_title | |
container_volume | |
creator | Yung-Ching Hsu Pangfeng Liu Jan-Jan Wu |
description | This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method. |
doi_str_mv | 10.1109/CSC.2011.6138524 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6138524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6138524</ieee_id><sourcerecordid>6138524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137t-4357c2278349835e74e05dc4ad4e3e2e7e2780826dcb46112bc7f91efd0ce41b3</originalsourceid><addsrcrecordid>eNo1j81Lw0AUxFdEUGvugpe9S-K-3bcfOUrwk0IP1XNJ3r5oJG1qtjn43xuwzmWY38DACHENqgBQ5V21rgqtAAoHJliNJ-IS0HoPzjg8FVnpw3-29lxkKX2pWc6FEPBC3L4OjUz8PfGOWCb65Dj13e5DtsMoqR-mKGnY7qfDzK7EWVv3ibOjL8T748Nb9ZwvV08v1f0yJzD-kKOxnrT2wWAZjGWPrGwkrCOyYc2e504F7SI16AB0Q74tgduoiBEasxA3f7sdM2_2Y7etx5_N8Z_5BXq1Qiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Job sequence scheduling for cloud computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yung-Ching Hsu ; Pangfeng Liu ; Jan-Jan Wu</creator><creatorcontrib>Yung-Ching Hsu ; Pangfeng Liu ; Jan-Jan Wu</creatorcontrib><description>This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.</description><identifier>ISBN: 9781457716355</identifier><identifier>ISBN: 1457716356</identifier><identifier>EISBN: 1457716364</identifier><identifier>EISBN: 9781457716362</identifier><identifier>EISBN: 9781457716379</identifier><identifier>EISBN: 1457716372</identifier><identifier>DOI: 10.1109/CSC.2011.6138524</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Energy conservation ; Job Sequence Scheduling ; Processor scheduling ; Program processors ; Resource management ; Servers ; Virtual machining</subject><ispartof>2011 International Conference on Cloud and Service Computing, 2011, p.212-219</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c137t-4357c2278349835e74e05dc4ad4e3e2e7e2780826dcb46112bc7f91efd0ce41b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6138524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6138524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yung-Ching Hsu</creatorcontrib><creatorcontrib>Pangfeng Liu</creatorcontrib><creatorcontrib>Jan-Jan Wu</creatorcontrib><title>Job sequence scheduling for cloud computing</title><title>2011 International Conference on Cloud and Service Computing</title><addtitle>CSC</addtitle><description>This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.</description><subject>Cloud computing</subject><subject>Energy conservation</subject><subject>Job Sequence Scheduling</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Resource management</subject><subject>Servers</subject><subject>Virtual machining</subject><isbn>9781457716355</isbn><isbn>1457716356</isbn><isbn>1457716364</isbn><isbn>9781457716362</isbn><isbn>9781457716379</isbn><isbn>1457716372</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Lw0AUxFdEUGvugpe9S-K-3bcfOUrwk0IP1XNJ3r5oJG1qtjn43xuwzmWY38DACHENqgBQ5V21rgqtAAoHJliNJ-IS0HoPzjg8FVnpw3-29lxkKX2pWc6FEPBC3L4OjUz8PfGOWCb65Dj13e5DtsMoqR-mKGnY7qfDzK7EWVv3ibOjL8T748Nb9ZwvV08v1f0yJzD-kKOxnrT2wWAZjGWPrGwkrCOyYc2e504F7SI16AB0Q74tgduoiBEasxA3f7sdM2_2Y7etx5_N8Z_5BXq1Qiw</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Yung-Ching Hsu</creator><creator>Pangfeng Liu</creator><creator>Jan-Jan Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Job sequence scheduling for cloud computing</title><author>Yung-Ching Hsu ; Pangfeng Liu ; Jan-Jan Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137t-4357c2278349835e74e05dc4ad4e3e2e7e2780826dcb46112bc7f91efd0ce41b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cloud computing</topic><topic>Energy conservation</topic><topic>Job Sequence Scheduling</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Resource management</topic><topic>Servers</topic><topic>Virtual machining</topic><toplevel>online_resources</toplevel><creatorcontrib>Yung-Ching Hsu</creatorcontrib><creatorcontrib>Pangfeng Liu</creatorcontrib><creatorcontrib>Jan-Jan Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yung-Ching Hsu</au><au>Pangfeng Liu</au><au>Jan-Jan Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Job sequence scheduling for cloud computing</atitle><btitle>2011 International Conference on Cloud and Service Computing</btitle><stitle>CSC</stitle><date>2011-12</date><risdate>2011</risdate><spage>212</spage><epage>219</epage><pages>212-219</pages><isbn>9781457716355</isbn><isbn>1457716356</isbn><eisbn>1457716364</eisbn><eisbn>9781457716362</eisbn><eisbn>9781457716379</eisbn><eisbn>1457716372</eisbn><abstract>This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.</abstract><pub>IEEE</pub><doi>10.1109/CSC.2011.6138524</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457716355 |
ispartof | 2011 International Conference on Cloud and Service Computing, 2011, p.212-219 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6138524 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cloud computing Energy conservation Job Sequence Scheduling Processor scheduling Program processors Resource management Servers Virtual machining |
title | Job sequence scheduling for cloud computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Job%20sequence%20scheduling%20for%20cloud%20computing&rft.btitle=2011%20International%20Conference%20on%20Cloud%20and%20Service%20Computing&rft.au=Yung-Ching%20Hsu&rft.date=2011-12&rft.spage=212&rft.epage=219&rft.pages=212-219&rft.isbn=9781457716355&rft.isbn_list=1457716356&rft_id=info:doi/10.1109/CSC.2011.6138524&rft_dat=%3Cieee_6IE%3E6138524%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716364&rft.eisbn_list=9781457716362&rft.eisbn_list=9781457716379&rft.eisbn_list=1457716372&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6138524&rfr_iscdi=true |