Job sequence scheduling for cloud computing

This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yung-Ching Hsu, Pangfeng Liu, Jan-Jan Wu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue
container_start_page 212
container_title
container_volume
creator Yung-Ching Hsu
Pangfeng Liu
Jan-Jan Wu
description This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.
doi_str_mv 10.1109/CSC.2011.6138524
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6138524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6138524</ieee_id><sourcerecordid>6138524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137t-4357c2278349835e74e05dc4ad4e3e2e7e2780826dcb46112bc7f91efd0ce41b3</originalsourceid><addsrcrecordid>eNo1j81Lw0AUxFdEUGvugpe9S-K-3bcfOUrwk0IP1XNJ3r5oJG1qtjn43xuwzmWY38DACHENqgBQ5V21rgqtAAoHJliNJ-IS0HoPzjg8FVnpw3-29lxkKX2pWc6FEPBC3L4OjUz8PfGOWCb65Dj13e5DtsMoqR-mKGnY7qfDzK7EWVv3ibOjL8T748Nb9ZwvV08v1f0yJzD-kKOxnrT2wWAZjGWPrGwkrCOyYc2e504F7SI16AB0Q74tgduoiBEasxA3f7sdM2_2Y7etx5_N8Z_5BXq1Qiw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Job sequence scheduling for cloud computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yung-Ching Hsu ; Pangfeng Liu ; Jan-Jan Wu</creator><creatorcontrib>Yung-Ching Hsu ; Pangfeng Liu ; Jan-Jan Wu</creatorcontrib><description>This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.</description><identifier>ISBN: 9781457716355</identifier><identifier>ISBN: 1457716356</identifier><identifier>EISBN: 1457716364</identifier><identifier>EISBN: 9781457716362</identifier><identifier>EISBN: 9781457716379</identifier><identifier>EISBN: 1457716372</identifier><identifier>DOI: 10.1109/CSC.2011.6138524</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Energy conservation ; Job Sequence Scheduling ; Processor scheduling ; Program processors ; Resource management ; Servers ; Virtual machining</subject><ispartof>2011 International Conference on Cloud and Service Computing, 2011, p.212-219</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c137t-4357c2278349835e74e05dc4ad4e3e2e7e2780826dcb46112bc7f91efd0ce41b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6138524$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6138524$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yung-Ching Hsu</creatorcontrib><creatorcontrib>Pangfeng Liu</creatorcontrib><creatorcontrib>Jan-Jan Wu</creatorcontrib><title>Job sequence scheduling for cloud computing</title><title>2011 International Conference on Cloud and Service Computing</title><addtitle>CSC</addtitle><description>This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.</description><subject>Cloud computing</subject><subject>Energy conservation</subject><subject>Job Sequence Scheduling</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Resource management</subject><subject>Servers</subject><subject>Virtual machining</subject><isbn>9781457716355</isbn><isbn>1457716356</isbn><isbn>1457716364</isbn><isbn>9781457716362</isbn><isbn>9781457716379</isbn><isbn>1457716372</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Lw0AUxFdEUGvugpe9S-K-3bcfOUrwk0IP1XNJ3r5oJG1qtjn43xuwzmWY38DACHENqgBQ5V21rgqtAAoHJliNJ-IS0HoPzjg8FVnpw3-29lxkKX2pWc6FEPBC3L4OjUz8PfGOWCb65Dj13e5DtsMoqR-mKGnY7qfDzK7EWVv3ibOjL8T748Nb9ZwvV08v1f0yJzD-kKOxnrT2wWAZjGWPrGwkrCOyYc2e504F7SI16AB0Q74tgduoiBEasxA3f7sdM2_2Y7etx5_N8Z_5BXq1Qiw</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Yung-Ching Hsu</creator><creator>Pangfeng Liu</creator><creator>Jan-Jan Wu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Job sequence scheduling for cloud computing</title><author>Yung-Ching Hsu ; Pangfeng Liu ; Jan-Jan Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137t-4357c2278349835e74e05dc4ad4e3e2e7e2780826dcb46112bc7f91efd0ce41b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cloud computing</topic><topic>Energy conservation</topic><topic>Job Sequence Scheduling</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Resource management</topic><topic>Servers</topic><topic>Virtual machining</topic><toplevel>online_resources</toplevel><creatorcontrib>Yung-Ching Hsu</creatorcontrib><creatorcontrib>Pangfeng Liu</creatorcontrib><creatorcontrib>Jan-Jan Wu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yung-Ching Hsu</au><au>Pangfeng Liu</au><au>Jan-Jan Wu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Job sequence scheduling for cloud computing</atitle><btitle>2011 International Conference on Cloud and Service Computing</btitle><stitle>CSC</stitle><date>2011-12</date><risdate>2011</risdate><spage>212</spage><epage>219</epage><pages>212-219</pages><isbn>9781457716355</isbn><isbn>1457716356</isbn><eisbn>1457716364</eisbn><eisbn>9781457716362</eisbn><eisbn>9781457716379</eisbn><eisbn>1457716372</eisbn><abstract>This paper describes the important issue of energy conservation for data centers. We consider the problem of provisioning physical servers to a sequence of jobs, and reducing the total energy consumption. The performance metric is the wasted energy - the over-provisioned computing power provided by the physical servers, but exceeding the requirement of the jobs. We propose three new strategies for allocating servers to a sequence of jobs - a largest machine first heuristic, a best fit method, and a mixed method. We prove that both the largest machine first heuristic and the mixed method will only incur at most 2 in over-provisioned energy. That is, the ratio between the over-provisioned energy and the total provisioned energy is bounded by 2/n(1 + δ), where n is the number of jobs, and 1 + δ is the ratio between the maximum and minimum execution time of jobs. We also derive a tight bound of i on the ratio of wasted energy if the ratio 5 could be arbitrarily large. We also conduct experiments to compare the three algorithms in practice. The experiment results indicate that all three algorithms waste very little energy in over-provision. The mixed method outperforms the best fit method, which outperforms the largest machine first method.</abstract><pub>IEEE</pub><doi>10.1109/CSC.2011.6138524</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457716355
ispartof 2011 International Conference on Cloud and Service Computing, 2011, p.212-219
issn
language eng
recordid cdi_ieee_primary_6138524
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cloud computing
Energy conservation
Job Sequence Scheduling
Processor scheduling
Program processors
Resource management
Servers
Virtual machining
title Job sequence scheduling for cloud computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Job%20sequence%20scheduling%20for%20cloud%20computing&rft.btitle=2011%20International%20Conference%20on%20Cloud%20and%20Service%20Computing&rft.au=Yung-Ching%20Hsu&rft.date=2011-12&rft.spage=212&rft.epage=219&rft.pages=212-219&rft.isbn=9781457716355&rft.isbn_list=1457716356&rft_id=info:doi/10.1109/CSC.2011.6138524&rft_dat=%3Cieee_6IE%3E6138524%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716364&rft.eisbn_list=9781457716362&rft.eisbn_list=9781457716379&rft.eisbn_list=1457716372&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6138524&rfr_iscdi=true