Structured Feature Selection and Task Relationship Inference for Multi-task Learning
Multi-task Learning (MTL) aims to enhance the generalization performance of supervised regression or classification by learning multiple related tasks simultaneously. In this paper, we aim to extend the current MTL techniques to high dimensional data sets with structured input and structured output...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | |
container_volume | |
creator | Hongliang Fei Jun Huan |
description | Multi-task Learning (MTL) aims to enhance the generalization performance of supervised regression or classification by learning multiple related tasks simultaneously. In this paper, we aim to extend the current MTL techniques to high dimensional data sets with structured input and structured output (SISO), where the SI means the input features are structured and the SO means the tasks are structured. We investigate a completely ignored problem in MTL with SISO data: the interaction of structured feature selection and task relationship modeling. We hypothesize that combining the structure information of features and task relationship inference enables us to build more accurate MTL models. Based on the hypothesis, we have designed an efficient learning algorithm, in which we utilize a task covariance matrix related to the model parameters to capture the task relationship. In addition, we design a regularization formulation for incorporating the structure of features in MTL. We have developed an efficient iterative optimization algorithm to solve the corresponding optimization problem. Our algorithm is based on the accelerated first order gradient method in conjunction with the projected gradient scheme. Using two real-world data sets, the experimental results demonstrate the utility of the proposed learning methods. |
doi_str_mv | 10.1109/ICDM.2011.139 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6137221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6137221</ieee_id><sourcerecordid>6137221</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-71c3f88b484974ca13faed9f24a0509a6b73f23308dcc79d9400adebb3f4a15e3</originalsourceid><addsrcrecordid>eNotjMtOwzAQRc1LIi1dsmLjH0iZ8SO2l6i0UKkVEs2-cpwxWIS0ctIFf48qWN2jo6PL2D3CHBHc43rxvJ0LQJyjdBdsAqZyWimw9pIVQhpVWmWrKzZBpY0RYLS4ZgVqDaUytrpls2FIDaC2UuhKFqzejfkUxlOmlq_In4HvqKMwpkPPfd_y2g9f_J06fzbDZzrydR8pUx-Ix0Pm21M3pnI8VxvyuU_9xx27ib4baPa_U1avlvXitdy8vawXT5syORhLg0FGaxtllTMqeJTRU-uiUB40OF81RkYhJdg2BONapwB8S00jo_KoSU7Zw99tIqL9Madvn3_2FUojBMpfo4JUXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structured Feature Selection and Task Relationship Inference for Multi-task Learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hongliang Fei ; Jun Huan</creator><creatorcontrib>Hongliang Fei ; Jun Huan</creatorcontrib><description>Multi-task Learning (MTL) aims to enhance the generalization performance of supervised regression or classification by learning multiple related tasks simultaneously. In this paper, we aim to extend the current MTL techniques to high dimensional data sets with structured input and structured output (SISO), where the SI means the input features are structured and the SO means the tasks are structured. We investigate a completely ignored problem in MTL with SISO data: the interaction of structured feature selection and task relationship modeling. We hypothesize that combining the structure information of features and task relationship inference enables us to build more accurate MTL models. Based on the hypothesis, we have designed an efficient learning algorithm, in which we utilize a task covariance matrix related to the model parameters to capture the task relationship. In addition, we design a regularization formulation for incorporating the structure of features in MTL. We have developed an efficient iterative optimization algorithm to solve the corresponding optimization problem. Our algorithm is based on the accelerated first order gradient method in conjunction with the projected gradient scheme. Using two real-world data sets, the experimental results demonstrate the utility of the proposed learning methods.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 1457720752</identifier><identifier>ISBN: 9781457720758</identifier><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 0769544088</identifier><identifier>EISBN: 9780769544083</identifier><identifier>DOI: 10.1109/ICDM.2011.139</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Cancer ; Convergence ; Covariance matrix ; Data models ; Multi-task Learning ; Optimization ; Silicon ; Structural Sparsity ; Structured Input and Structured Output ; Task Relationship Inference</subject><ispartof>2011 IEEE 11th International Conference on Data Mining, 2011, p.171-180</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6137221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6137221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><title>Structured Feature Selection and Task Relationship Inference for Multi-task Learning</title><title>2011 IEEE 11th International Conference on Data Mining</title><addtitle>icdm</addtitle><description>Multi-task Learning (MTL) aims to enhance the generalization performance of supervised regression or classification by learning multiple related tasks simultaneously. In this paper, we aim to extend the current MTL techniques to high dimensional data sets with structured input and structured output (SISO), where the SI means the input features are structured and the SO means the tasks are structured. We investigate a completely ignored problem in MTL with SISO data: the interaction of structured feature selection and task relationship modeling. We hypothesize that combining the structure information of features and task relationship inference enables us to build more accurate MTL models. Based on the hypothesis, we have designed an efficient learning algorithm, in which we utilize a task covariance matrix related to the model parameters to capture the task relationship. In addition, we design a regularization formulation for incorporating the structure of features in MTL. We have developed an efficient iterative optimization algorithm to solve the corresponding optimization problem. Our algorithm is based on the accelerated first order gradient method in conjunction with the projected gradient scheme. Using two real-world data sets, the experimental results demonstrate the utility of the proposed learning methods.</description><subject>Acceleration</subject><subject>Cancer</subject><subject>Convergence</subject><subject>Covariance matrix</subject><subject>Data models</subject><subject>Multi-task Learning</subject><subject>Optimization</subject><subject>Silicon</subject><subject>Structural Sparsity</subject><subject>Structured Input and Structured Output</subject><subject>Task Relationship Inference</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>1457720752</isbn><isbn>9781457720758</isbn><isbn>0769544088</isbn><isbn>9780769544083</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAQRc1LIi1dsmLjH0iZ8SO2l6i0UKkVEs2-cpwxWIS0ctIFf48qWN2jo6PL2D3CHBHc43rxvJ0LQJyjdBdsAqZyWimw9pIVQhpVWmWrKzZBpY0RYLS4ZgVqDaUytrpls2FIDaC2UuhKFqzejfkUxlOmlq_In4HvqKMwpkPPfd_y2g9f_J06fzbDZzrydR8pUx-Ix0Pm21M3pnI8VxvyuU_9xx27ib4baPa_U1avlvXitdy8vawXT5syORhLg0FGaxtllTMqeJTRU-uiUB40OF81RkYhJdg2BONapwB8S00jo_KoSU7Zw99tIqL9Madvn3_2FUojBMpfo4JUXg</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hongliang Fei</creator><creator>Jun Huan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Structured Feature Selection and Task Relationship Inference for Multi-task Learning</title><author>Hongliang Fei ; Jun Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-71c3f88b484974ca13faed9f24a0509a6b73f23308dcc79d9400adebb3f4a15e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration</topic><topic>Cancer</topic><topic>Convergence</topic><topic>Covariance matrix</topic><topic>Data models</topic><topic>Multi-task Learning</topic><topic>Optimization</topic><topic>Silicon</topic><topic>Structural Sparsity</topic><topic>Structured Input and Structured Output</topic><topic>Task Relationship Inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Hongliang Fei</creatorcontrib><creatorcontrib>Jun Huan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hongliang Fei</au><au>Jun Huan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structured Feature Selection and Task Relationship Inference for Multi-task Learning</atitle><btitle>2011 IEEE 11th International Conference on Data Mining</btitle><stitle>icdm</stitle><date>2011-12</date><risdate>2011</risdate><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>1457720752</isbn><isbn>9781457720758</isbn><eisbn>0769544088</eisbn><eisbn>9780769544083</eisbn><abstract>Multi-task Learning (MTL) aims to enhance the generalization performance of supervised regression or classification by learning multiple related tasks simultaneously. In this paper, we aim to extend the current MTL techniques to high dimensional data sets with structured input and structured output (SISO), where the SI means the input features are structured and the SO means the tasks are structured. We investigate a completely ignored problem in MTL with SISO data: the interaction of structured feature selection and task relationship modeling. We hypothesize that combining the structure information of features and task relationship inference enables us to build more accurate MTL models. Based on the hypothesis, we have designed an efficient learning algorithm, in which we utilize a task covariance matrix related to the model parameters to capture the task relationship. In addition, we design a regularization formulation for incorporating the structure of features in MTL. We have developed an efficient iterative optimization algorithm to solve the corresponding optimization problem. Our algorithm is based on the accelerated first order gradient method in conjunction with the projected gradient scheme. Using two real-world data sets, the experimental results demonstrate the utility of the proposed learning methods.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2011.139</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | 2011 IEEE 11th International Conference on Data Mining, 2011, p.171-180 |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_6137221 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Cancer Convergence Covariance matrix Data models Multi-task Learning Optimization Silicon Structural Sparsity Structured Input and Structured Output Task Relationship Inference |
title | Structured Feature Selection and Task Relationship Inference for Multi-task Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structured%20Feature%20Selection%20and%20Task%20Relationship%20Inference%20for%20Multi-task%20Learning&rft.btitle=2011%20IEEE%2011th%20International%20Conference%20on%20Data%20Mining&rft.au=Hongliang%20Fei&rft.date=2011-12&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=1457720752&rft.isbn_list=9781457720758&rft_id=info:doi/10.1109/ICDM.2011.139&rft_dat=%3Cieee_6IE%3E6137221%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769544088&rft.eisbn_list=9780769544083&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6137221&rfr_iscdi=true |