Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE
The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2012-02, Vol.48 (2), p.463-466 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 2 |
container_start_page | 463 |
container_title | IEEE transactions on magnetics |
container_volume | 48 |
creator | Ishibashi, K. Andjelic, Z. Takahashi, Y. Takamatsu, T. Tsuzaki, K. Wakao, S. Fujiwara, K. Ishihara, Y. |
description | The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches. |
doi_str_mv | 10.1109/TMAG.2011.2174778 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6136647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6136647</ieee_id><sourcerecordid>25948941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</originalsourceid><addsrcrecordid>eNo9kMFOAjEURRujiYh-gHHTjcvBvrbTTpdIAElAF6IuJ2XmFWuGGdKWBX_vEIyrl5t7z1scQu6BjQCYeVqvxvMRZwAjDlpqXVyQARgJGWPKXJIBY1BkRip5TW5i_OmjzIENyNd7t0O6DmjTDtsUaefozFfJJ98dIv3smkPfT75t2GKkvqWvXdv4Fm2gK7ttMXUx2eQrOm5tc4w-0s2RPi-mt-TK2Sbi3d8dko_ZdD15yZZv88VkvMwqoSBl2lU1ggMF3ORSV0baWlkmwWihhWDMuaKoOebcFm6DBecOa11jXqMVGyPEkMD5bxW6GAO6ch_8zoZjCaw8mSlPZsqTmfLPTM88npm9jZVtXLBt5eM_yHMji15dv3s47zwi_tcKhFJSi18lJG0D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</title><source>IEEE Electronic Library (IEL)</source><creator>Ishibashi, K. ; Andjelic, Z. ; Takahashi, Y. ; Takamatsu, T. ; Tsuzaki, K. ; Wakao, S. ; Fujiwara, K. ; Ishihara, Y.</creator><creatorcontrib>Ishibashi, K. ; Andjelic, Z. ; Takahashi, Y. ; Takamatsu, T. ; Tsuzaki, K. ; Wakao, S. ; Fujiwara, K. ; Ishihara, Y.</creatorcontrib><description>The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2011.2174778</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary integral equation ; Coils ; Cross-disciplinary physics: materials science; rheology ; double layer charge ; Exact sciences and technology ; fictitious volume charges ; Integral equations ; iterative solutions ; Magnetic cores ; Magnetic flux ; Magnetization ; Magnetostatics ; Materials science ; multi-valued function ; Other topics in materials science ; Physics ; Surface treatment</subject><ispartof>IEEE transactions on magnetics, 2012-02, Vol.48 (2), p.463-466</ispartof><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</citedby><cites>FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6136647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6136647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25948941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishibashi, K.</creatorcontrib><creatorcontrib>Andjelic, Z.</creatorcontrib><creatorcontrib>Takahashi, Y.</creatorcontrib><creatorcontrib>Takamatsu, T.</creatorcontrib><creatorcontrib>Tsuzaki, K.</creatorcontrib><creatorcontrib>Wakao, S.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><creatorcontrib>Ishihara, Y.</creatorcontrib><title>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.</description><subject>Boundary integral equation</subject><subject>Coils</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>double layer charge</subject><subject>Exact sciences and technology</subject><subject>fictitious volume charges</subject><subject>Integral equations</subject><subject>iterative solutions</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetization</subject><subject>Magnetostatics</subject><subject>Materials science</subject><subject>multi-valued function</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Surface treatment</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEURRujiYh-gHHTjcvBvrbTTpdIAElAF6IuJ2XmFWuGGdKWBX_vEIyrl5t7z1scQu6BjQCYeVqvxvMRZwAjDlpqXVyQARgJGWPKXJIBY1BkRip5TW5i_OmjzIENyNd7t0O6DmjTDtsUaefozFfJJ98dIv3smkPfT75t2GKkvqWvXdv4Fm2gK7ttMXUx2eQrOm5tc4w-0s2RPi-mt-TK2Sbi3d8dko_ZdD15yZZv88VkvMwqoSBl2lU1ggMF3ORSV0baWlkmwWihhWDMuaKoOebcFm6DBecOa11jXqMVGyPEkMD5bxW6GAO6ch_8zoZjCaw8mSlPZsqTmfLPTM88npm9jZVtXLBt5eM_yHMji15dv3s47zwi_tcKhFJSi18lJG0D</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Ishibashi, K.</creator><creator>Andjelic, Z.</creator><creator>Takahashi, Y.</creator><creator>Takamatsu, T.</creator><creator>Tsuzaki, K.</creator><creator>Wakao, S.</creator><creator>Fujiwara, K.</creator><creator>Ishihara, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120201</creationdate><title>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</title><author>Ishibashi, K. ; Andjelic, Z. ; Takahashi, Y. ; Takamatsu, T. ; Tsuzaki, K. ; Wakao, S. ; Fujiwara, K. ; Ishihara, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary integral equation</topic><topic>Coils</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>double layer charge</topic><topic>Exact sciences and technology</topic><topic>fictitious volume charges</topic><topic>Integral equations</topic><topic>iterative solutions</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetization</topic><topic>Magnetostatics</topic><topic>Materials science</topic><topic>multi-valued function</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishibashi, K.</creatorcontrib><creatorcontrib>Andjelic, Z.</creatorcontrib><creatorcontrib>Takahashi, Y.</creatorcontrib><creatorcontrib>Takamatsu, T.</creatorcontrib><creatorcontrib>Tsuzaki, K.</creatorcontrib><creatorcontrib>Wakao, S.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><creatorcontrib>Ishihara, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishibashi, K.</au><au>Andjelic, Z.</au><au>Takahashi, Y.</au><au>Takamatsu, T.</au><au>Tsuzaki, K.</au><au>Wakao, S.</au><au>Fujiwara, K.</au><au>Ishihara, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>48</volume><issue>2</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2011.2174778</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2012-02, Vol.48 (2), p.463-466 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_6136647 |
source | IEEE Electronic Library (IEL) |
subjects | Boundary integral equation Coils Cross-disciplinary physics: materials science rheology double layer charge Exact sciences and technology fictitious volume charges Integral equations iterative solutions Magnetic cores Magnetic flux Magnetization Magnetostatics Materials science multi-valued function Other topics in materials science Physics Surface treatment |
title | Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Treatments%20of%20Fictitious%20Volume%20Charges%20in%20Nonlinear%20Magnetostatic%20Analysis%20by%20BIE&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ishibashi,%20K.&rft.date=2012-02-01&rft.volume=48&rft.issue=2&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2011.2174778&rft_dat=%3Cpascalfrancis_RIE%3E25948941%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6136647&rfr_iscdi=true |