Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE

The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2012-02, Vol.48 (2), p.463-466
Hauptverfasser: Ishibashi, K., Andjelic, Z., Takahashi, Y., Takamatsu, T., Tsuzaki, K., Wakao, S., Fujiwara, K., Ishihara, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 2
container_start_page 463
container_title IEEE transactions on magnetics
container_volume 48
creator Ishibashi, K.
Andjelic, Z.
Takahashi, Y.
Takamatsu, T.
Tsuzaki, K.
Wakao, S.
Fujiwara, K.
Ishihara, Y.
description The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.
doi_str_mv 10.1109/TMAG.2011.2174778
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6136647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6136647</ieee_id><sourcerecordid>25948941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</originalsourceid><addsrcrecordid>eNo9kMFOAjEURRujiYh-gHHTjcvBvrbTTpdIAElAF6IuJ2XmFWuGGdKWBX_vEIyrl5t7z1scQu6BjQCYeVqvxvMRZwAjDlpqXVyQARgJGWPKXJIBY1BkRip5TW5i_OmjzIENyNd7t0O6DmjTDtsUaefozFfJJ98dIv3smkPfT75t2GKkvqWvXdv4Fm2gK7ttMXUx2eQrOm5tc4w-0s2RPi-mt-TK2Sbi3d8dko_ZdD15yZZv88VkvMwqoSBl2lU1ggMF3ORSV0baWlkmwWihhWDMuaKoOebcFm6DBecOa11jXqMVGyPEkMD5bxW6GAO6ch_8zoZjCaw8mSlPZsqTmfLPTM88npm9jZVtXLBt5eM_yHMji15dv3s47zwi_tcKhFJSi18lJG0D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</title><source>IEEE Electronic Library (IEL)</source><creator>Ishibashi, K. ; Andjelic, Z. ; Takahashi, Y. ; Takamatsu, T. ; Tsuzaki, K. ; Wakao, S. ; Fujiwara, K. ; Ishihara, Y.</creator><creatorcontrib>Ishibashi, K. ; Andjelic, Z. ; Takahashi, Y. ; Takamatsu, T. ; Tsuzaki, K. ; Wakao, S. ; Fujiwara, K. ; Ishihara, Y.</creatorcontrib><description>The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2011.2174778</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Boundary integral equation ; Coils ; Cross-disciplinary physics: materials science; rheology ; double layer charge ; Exact sciences and technology ; fictitious volume charges ; Integral equations ; iterative solutions ; Magnetic cores ; Magnetic flux ; Magnetization ; Magnetostatics ; Materials science ; multi-valued function ; Other topics in materials science ; Physics ; Surface treatment</subject><ispartof>IEEE transactions on magnetics, 2012-02, Vol.48 (2), p.463-466</ispartof><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</citedby><cites>FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6136647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,793,23911,23912,25121,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6136647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25948941$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishibashi, K.</creatorcontrib><creatorcontrib>Andjelic, Z.</creatorcontrib><creatorcontrib>Takahashi, Y.</creatorcontrib><creatorcontrib>Takamatsu, T.</creatorcontrib><creatorcontrib>Tsuzaki, K.</creatorcontrib><creatorcontrib>Wakao, S.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><creatorcontrib>Ishihara, Y.</creatorcontrib><title>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.</description><subject>Boundary integral equation</subject><subject>Coils</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>double layer charge</subject><subject>Exact sciences and technology</subject><subject>fictitious volume charges</subject><subject>Integral equations</subject><subject>iterative solutions</subject><subject>Magnetic cores</subject><subject>Magnetic flux</subject><subject>Magnetization</subject><subject>Magnetostatics</subject><subject>Materials science</subject><subject>multi-valued function</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Surface treatment</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEURRujiYh-gHHTjcvBvrbTTpdIAElAF6IuJ2XmFWuGGdKWBX_vEIyrl5t7z1scQu6BjQCYeVqvxvMRZwAjDlpqXVyQARgJGWPKXJIBY1BkRip5TW5i_OmjzIENyNd7t0O6DmjTDtsUaefozFfJJ98dIv3smkPfT75t2GKkvqWvXdv4Fm2gK7ttMXUx2eQrOm5tc4w-0s2RPi-mt-TK2Sbi3d8dko_ZdD15yZZv88VkvMwqoSBl2lU1ggMF3ORSV0baWlkmwWihhWDMuaKoOebcFm6DBecOa11jXqMVGyPEkMD5bxW6GAO6ch_8zoZjCaw8mSlPZsqTmfLPTM88npm9jZVtXLBt5eM_yHMji15dv3s47zwi_tcKhFJSi18lJG0D</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Ishibashi, K.</creator><creator>Andjelic, Z.</creator><creator>Takahashi, Y.</creator><creator>Takamatsu, T.</creator><creator>Tsuzaki, K.</creator><creator>Wakao, S.</creator><creator>Fujiwara, K.</creator><creator>Ishihara, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120201</creationdate><title>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</title><author>Ishibashi, K. ; Andjelic, Z. ; Takahashi, Y. ; Takamatsu, T. ; Tsuzaki, K. ; Wakao, S. ; Fujiwara, K. ; Ishihara, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-7fcde1f16129547c94ad6a04197373300ff88d2e52a8fbe822fed7de5dea3b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary integral equation</topic><topic>Coils</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>double layer charge</topic><topic>Exact sciences and technology</topic><topic>fictitious volume charges</topic><topic>Integral equations</topic><topic>iterative solutions</topic><topic>Magnetic cores</topic><topic>Magnetic flux</topic><topic>Magnetization</topic><topic>Magnetostatics</topic><topic>Materials science</topic><topic>multi-valued function</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishibashi, K.</creatorcontrib><creatorcontrib>Andjelic, Z.</creatorcontrib><creatorcontrib>Takahashi, Y.</creatorcontrib><creatorcontrib>Takamatsu, T.</creatorcontrib><creatorcontrib>Tsuzaki, K.</creatorcontrib><creatorcontrib>Wakao, S.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><creatorcontrib>Ishihara, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishibashi, K.</au><au>Andjelic, Z.</au><au>Takahashi, Y.</au><au>Takamatsu, T.</au><au>Tsuzaki, K.</au><au>Wakao, S.</au><au>Fujiwara, K.</au><au>Ishihara, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>48</volume><issue>2</issue><spage>463</spage><epage>466</epage><pages>463-466</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The scalar potential formulation by the boundary integral equation approach is attractive for numerical analysis but has fatal drawbacks due to a multi-valued function in current excitation. We derive an all-purpose boundary integral equation with double layer charges as the state variable and apply it to nonlinear magnetostatic problems by regarding the nonlinear magnetization as fictitious volume charges. We investigate two approaches how to treat the fictitious charges. In discretization by the constant volume element, a surface loop current is introduced for the volume charge. By the linear volume element, the fictitious charges are evaluated on the condition that the divergence of the magnetic flux density is zero. We give a comparative study of these two approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2011.2174778</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2012-02, Vol.48 (2), p.463-466
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_6136647
source IEEE Electronic Library (IEL)
subjects Boundary integral equation
Coils
Cross-disciplinary physics: materials science
rheology
double layer charge
Exact sciences and technology
fictitious volume charges
Integral equations
iterative solutions
Magnetic cores
Magnetic flux
Magnetization
Magnetostatics
Materials science
multi-valued function
Other topics in materials science
Physics
Surface treatment
title Some Treatments of Fictitious Volume Charges in Nonlinear Magnetostatic Analysis by BIE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Treatments%20of%20Fictitious%20Volume%20Charges%20in%20Nonlinear%20Magnetostatic%20Analysis%20by%20BIE&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Ishibashi,%20K.&rft.date=2012-02-01&rft.volume=48&rft.issue=2&rft.spage=463&rft.epage=466&rft.pages=463-466&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2011.2174778&rft_dat=%3Cpascalfrancis_RIE%3E25948941%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6136647&rfr_iscdi=true