Bayesian compressed sensing in ultrasound imaging

Following our previous study on compressed sensing for ultrasound imaging, this paper proposes to exploit the image sparsity in the frequency domain within a Bayesian approach. A Bernoulli-Gaussian prior is assigned to the Fourier transform of the ultrasound image in order to enforce sparsity and to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Quinsac, C., Dobigeon, N., Basarab, A., Kouame, D., Tourneret, J-V
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 101
container_title
container_volume
creator Quinsac, C.
Dobigeon, N.
Basarab, A.
Kouame, D.
Tourneret, J-V
description Following our previous study on compressed sensing for ultrasound imaging, this paper proposes to exploit the image sparsity in the frequency domain within a Bayesian approach. A Bernoulli-Gaussian prior is assigned to the Fourier transform of the ultrasound image in order to enforce sparsity and to reconstruct the image via Bayesian compressed sensing. In addition, the Bayesian approach allows the image sparsity level in the spectral domain to be estimated, a significant parameter in the ℓ 1 constrained minimization problem related to compressed sensing. Results obtained with a simulated ultrasound image and an in vivo image of a human thyroid gland show a reconstruction performance similar to a classical compressed sensing algorithm from half of spatial samples while estimating the sparsity level during reconstruction.
doi_str_mv 10.1109/CAMSAP.2011.6135897
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6135897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6135897</ieee_id><sourcerecordid>oai_HAL_hal_03146733v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-7a32c63b036fdb11a0edbdad747d4e7ba54d403afa3947b739634fa3aad1e2d43</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhVdEUGt-QS-5ekjcyWx2mmMM2goRBfUcJtlNjaRJybZC_70rrc5leI-PN7wRYg4yBpDZXZE_v-WvcSIBYg2YLjI6E9egUqIEJMK5CDJa_GmVXorAuS_pR2vP6isB93ywruMhbMbNdrLOWRM6O7huWIfdEO773cRu3A8m7Da89u6NuGi5dzY47Zn4eHx4L1ZR-bJ8KvIyaoDULiLGpNFYS9StqQFYWlMbNqTIKEs1p8ooidwyZopqwkyj8oLZgE2Mwpm4PeZ-cl9tJ399OlQjd9UqL6tfz_dTmhC_wbPzI9tZa__h00fwBznBVDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bayesian compressed sensing in ultrasound imaging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Quinsac, C. ; Dobigeon, N. ; Basarab, A. ; Kouame, D. ; Tourneret, J-V</creator><creatorcontrib>Quinsac, C. ; Dobigeon, N. ; Basarab, A. ; Kouame, D. ; Tourneret, J-V</creatorcontrib><description>Following our previous study on compressed sensing for ultrasound imaging, this paper proposes to exploit the image sparsity in the frequency domain within a Bayesian approach. A Bernoulli-Gaussian prior is assigned to the Fourier transform of the ultrasound image in order to enforce sparsity and to reconstruct the image via Bayesian compressed sensing. In addition, the Bayesian approach allows the image sparsity level in the spectral domain to be estimated, a significant parameter in the ℓ 1 constrained minimization problem related to compressed sensing. Results obtained with a simulated ultrasound image and an in vivo image of a human thyroid gland show a reconstruction performance similar to a classical compressed sensing algorithm from half of spatial samples while estimating the sparsity level during reconstruction.</description><identifier>ISBN: 9781457721045</identifier><identifier>ISBN: 145772104X</identifier><identifier>EISBN: 1457721031</identifier><identifier>EISBN: 9781457721038</identifier><identifier>EISBN: 9781457721052</identifier><identifier>EISBN: 1457721058</identifier><identifier>DOI: 10.1109/CAMSAP.2011.6135897</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Bayesian reconstruction ; Compressed sensing ; Computer Science ; Histograms ; Image reconstruction ; Imaging ; Minimization ; sparsity ; Ultrasonic imaging ; ultrasound imaging</subject><ispartof>2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011, p.101-104</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c174t-7a32c63b036fdb11a0edbdad747d4e7ba54d403afa3947b739634fa3aad1e2d43</citedby><orcidid>0000-0002-4842-9696 ; 0000-0002-5642-7244 ; 0000-0001-8127-350X ; 0000-0001-5219-3455 ; 0000-0002-2143-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6135897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2057,4049,4050,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6135897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03146733$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Quinsac, C.</creatorcontrib><creatorcontrib>Dobigeon, N.</creatorcontrib><creatorcontrib>Basarab, A.</creatorcontrib><creatorcontrib>Kouame, D.</creatorcontrib><creatorcontrib>Tourneret, J-V</creatorcontrib><title>Bayesian compressed sensing in ultrasound imaging</title><title>2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)</title><addtitle>CAMSAP</addtitle><description>Following our previous study on compressed sensing for ultrasound imaging, this paper proposes to exploit the image sparsity in the frequency domain within a Bayesian approach. A Bernoulli-Gaussian prior is assigned to the Fourier transform of the ultrasound image in order to enforce sparsity and to reconstruct the image via Bayesian compressed sensing. In addition, the Bayesian approach allows the image sparsity level in the spectral domain to be estimated, a significant parameter in the ℓ 1 constrained minimization problem related to compressed sensing. Results obtained with a simulated ultrasound image and an in vivo image of a human thyroid gland show a reconstruction performance similar to a classical compressed sensing algorithm from half of spatial samples while estimating the sparsity level during reconstruction.</description><subject>Bayesian methods</subject><subject>Bayesian reconstruction</subject><subject>Compressed sensing</subject><subject>Computer Science</subject><subject>Histograms</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Minimization</subject><subject>sparsity</subject><subject>Ultrasonic imaging</subject><subject>ultrasound imaging</subject><isbn>9781457721045</isbn><isbn>145772104X</isbn><isbn>1457721031</isbn><isbn>9781457721038</isbn><isbn>9781457721052</isbn><isbn>1457721058</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhVdEUGt-QS-5ekjcyWx2mmMM2goRBfUcJtlNjaRJybZC_70rrc5leI-PN7wRYg4yBpDZXZE_v-WvcSIBYg2YLjI6E9egUqIEJMK5CDJa_GmVXorAuS_pR2vP6isB93ywruMhbMbNdrLOWRM6O7huWIfdEO773cRu3A8m7Da89u6NuGi5dzY47Zn4eHx4L1ZR-bJ8KvIyaoDULiLGpNFYS9StqQFYWlMbNqTIKEs1p8ooidwyZopqwkyj8oLZgE2Mwpm4PeZ-cl9tJ399OlQjd9UqL6tfz_dTmhC_wbPzI9tZa__h00fwBznBVDQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Quinsac, C.</creator><creator>Dobigeon, N.</creator><creator>Basarab, A.</creator><creator>Kouame, D.</creator><creator>Tourneret, J-V</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4842-9696</orcidid><orcidid>https://orcid.org/0000-0002-5642-7244</orcidid><orcidid>https://orcid.org/0000-0001-8127-350X</orcidid><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid><orcidid>https://orcid.org/0000-0002-2143-759X</orcidid></search><sort><creationdate>201112</creationdate><title>Bayesian compressed sensing in ultrasound imaging</title><author>Quinsac, C. ; Dobigeon, N. ; Basarab, A. ; Kouame, D. ; Tourneret, J-V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-7a32c63b036fdb11a0edbdad747d4e7ba54d403afa3947b739634fa3aad1e2d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Bayesian reconstruction</topic><topic>Compressed sensing</topic><topic>Computer Science</topic><topic>Histograms</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Minimization</topic><topic>sparsity</topic><topic>Ultrasonic imaging</topic><topic>ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Quinsac, C.</creatorcontrib><creatorcontrib>Dobigeon, N.</creatorcontrib><creatorcontrib>Basarab, A.</creatorcontrib><creatorcontrib>Kouame, D.</creatorcontrib><creatorcontrib>Tourneret, J-V</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quinsac, C.</au><au>Dobigeon, N.</au><au>Basarab, A.</au><au>Kouame, D.</au><au>Tourneret, J-V</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bayesian compressed sensing in ultrasound imaging</atitle><btitle>2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)</btitle><stitle>CAMSAP</stitle><date>2011-12</date><risdate>2011</risdate><spage>101</spage><epage>104</epage><pages>101-104</pages><isbn>9781457721045</isbn><isbn>145772104X</isbn><eisbn>1457721031</eisbn><eisbn>9781457721038</eisbn><eisbn>9781457721052</eisbn><eisbn>1457721058</eisbn><abstract>Following our previous study on compressed sensing for ultrasound imaging, this paper proposes to exploit the image sparsity in the frequency domain within a Bayesian approach. A Bernoulli-Gaussian prior is assigned to the Fourier transform of the ultrasound image in order to enforce sparsity and to reconstruct the image via Bayesian compressed sensing. In addition, the Bayesian approach allows the image sparsity level in the spectral domain to be estimated, a significant parameter in the ℓ 1 constrained minimization problem related to compressed sensing. Results obtained with a simulated ultrasound image and an in vivo image of a human thyroid gland show a reconstruction performance similar to a classical compressed sensing algorithm from half of spatial samples while estimating the sparsity level during reconstruction.</abstract><pub>IEEE</pub><doi>10.1109/CAMSAP.2011.6135897</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4842-9696</orcidid><orcidid>https://orcid.org/0000-0002-5642-7244</orcidid><orcidid>https://orcid.org/0000-0001-8127-350X</orcidid><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid><orcidid>https://orcid.org/0000-0002-2143-759X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457721045
ispartof 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011, p.101-104
issn
language eng
recordid cdi_ieee_primary_6135897
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Bayesian reconstruction
Compressed sensing
Computer Science
Histograms
Image reconstruction
Imaging
Minimization
sparsity
Ultrasonic imaging
ultrasound imaging
title Bayesian compressed sensing in ultrasound imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bayesian%20compressed%20sensing%20in%20ultrasound%20imaging&rft.btitle=2011%204th%20IEEE%20International%20Workshop%20on%20Computational%20Advances%20in%20Multi-Sensor%20Adaptive%20Processing%20(CAMSAP)&rft.au=Quinsac,%20C.&rft.date=2011-12&rft.spage=101&rft.epage=104&rft.pages=101-104&rft.isbn=9781457721045&rft.isbn_list=145772104X&rft_id=info:doi/10.1109/CAMSAP.2011.6135897&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_03146733v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457721031&rft.eisbn_list=9781457721038&rft.eisbn_list=9781457721052&rft.eisbn_list=1457721058&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6135897&rfr_iscdi=true