Multi-cue learning and visualization of unusual events
Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of exist...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1940 |
---|---|
container_issue | |
container_start_page | 1933 |
container_title | |
container_volume | |
creator | Schuster, R. Schulter, S. Poier, G. Hirzer, M. Birchbauer, J. Roth, P. M. Bischof, H. Winter, M. Schallauer, P. |
description | Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data. |
doi_str_mv | 10.1109/ICCVW.2011.6130485 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6130485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6130485</ieee_id><sourcerecordid>6130485</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3b8abcde43db8487324569d6a6da1cfdf32cf45f8d4d4fdbd9855045860d53973</originalsourceid><addsrcrecordid>eNpFj81KxDAUhSMiqOO8gG7yAq03TXKbLKX4MzDiZtDlkPYmEqkZaZoBfXoVBzybw3cWHxzGLgXUQoC9XnXd80vdgBA1CgnK6CN2LhS2EgAFHv9Do07ZMuc3-AmisQhnDB_LOMdqKJ6P3k0pplfuEvF9zMWN8cvNcZf4LvCSyu_C_d6nOV-wk-DG7JeHXrDN3e2me6jWT_er7mZdRQtzJXvj-oG8ktQbZVrZKI2W0CE5MQQKshmC0sGQIhWoJ2u0BqUNAmlpW7lgV3_a6L3ffkzx3U2f28NN-Q0qIUbe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-cue learning and visualization of unusual events</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schuster, R. ; Schulter, S. ; Poier, G. ; Hirzer, M. ; Birchbauer, J. ; Roth, P. M. ; Bischof, H. ; Winter, M. ; Schallauer, P.</creator><creatorcontrib>Schuster, R. ; Schulter, S. ; Poier, G. ; Hirzer, M. ; Birchbauer, J. ; Roth, P. M. ; Bischof, H. ; Winter, M. ; Schallauer, P.</creatorcontrib><description>Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.</description><identifier>ISBN: 1467300624</identifier><identifier>ISBN: 9781467300629</identifier><identifier>EISBN: 1467300616</identifier><identifier>EISBN: 9781467300612</identifier><identifier>EISBN: 1467300632</identifier><identifier>EISBN: 9781467300636</identifier><identifier>DOI: 10.1109/ICCVW.2011.6130485</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Encoding ; Event detection ; Feature extraction ; Humans ; Vectors ; Visualization</subject><ispartof>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.1933-1940</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6130485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6130485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schuster, R.</creatorcontrib><creatorcontrib>Schulter, S.</creatorcontrib><creatorcontrib>Poier, G.</creatorcontrib><creatorcontrib>Hirzer, M.</creatorcontrib><creatorcontrib>Birchbauer, J.</creatorcontrib><creatorcontrib>Roth, P. M.</creatorcontrib><creatorcontrib>Bischof, H.</creatorcontrib><creatorcontrib>Winter, M.</creatorcontrib><creatorcontrib>Schallauer, P.</creatorcontrib><title>Multi-cue learning and visualization of unusual events</title><title>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</title><addtitle>ICCVW</addtitle><description>Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.</description><subject>Cameras</subject><subject>Encoding</subject><subject>Event detection</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Vectors</subject><subject>Visualization</subject><isbn>1467300624</isbn><isbn>9781467300629</isbn><isbn>1467300616</isbn><isbn>9781467300612</isbn><isbn>1467300632</isbn><isbn>9781467300636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81KxDAUhSMiqOO8gG7yAq03TXKbLKX4MzDiZtDlkPYmEqkZaZoBfXoVBzybw3cWHxzGLgXUQoC9XnXd80vdgBA1CgnK6CN2LhS2EgAFHv9Do07ZMuc3-AmisQhnDB_LOMdqKJ6P3k0pplfuEvF9zMWN8cvNcZf4LvCSyu_C_d6nOV-wk-DG7JeHXrDN3e2me6jWT_er7mZdRQtzJXvj-oG8ktQbZVrZKI2W0CE5MQQKshmC0sGQIhWoJ2u0BqUNAmlpW7lgV3_a6L3ffkzx3U2f28NN-Q0qIUbe</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Schuster, R.</creator><creator>Schulter, S.</creator><creator>Poier, G.</creator><creator>Hirzer, M.</creator><creator>Birchbauer, J.</creator><creator>Roth, P. M.</creator><creator>Bischof, H.</creator><creator>Winter, M.</creator><creator>Schallauer, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Multi-cue learning and visualization of unusual events</title><author>Schuster, R. ; Schulter, S. ; Poier, G. ; Hirzer, M. ; Birchbauer, J. ; Roth, P. M. ; Bischof, H. ; Winter, M. ; Schallauer, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3b8abcde43db8487324569d6a6da1cfdf32cf45f8d4d4fdbd9855045860d53973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Encoding</topic><topic>Event detection</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Schuster, R.</creatorcontrib><creatorcontrib>Schulter, S.</creatorcontrib><creatorcontrib>Poier, G.</creatorcontrib><creatorcontrib>Hirzer, M.</creatorcontrib><creatorcontrib>Birchbauer, J.</creatorcontrib><creatorcontrib>Roth, P. M.</creatorcontrib><creatorcontrib>Bischof, H.</creatorcontrib><creatorcontrib>Winter, M.</creatorcontrib><creatorcontrib>Schallauer, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schuster, R.</au><au>Schulter, S.</au><au>Poier, G.</au><au>Hirzer, M.</au><au>Birchbauer, J.</au><au>Roth, P. M.</au><au>Bischof, H.</au><au>Winter, M.</au><au>Schallauer, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-cue learning and visualization of unusual events</atitle><btitle>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</btitle><stitle>ICCVW</stitle><date>2011-11</date><risdate>2011</risdate><spage>1933</spage><epage>1940</epage><pages>1933-1940</pages><isbn>1467300624</isbn><isbn>9781467300629</isbn><eisbn>1467300616</eisbn><eisbn>9781467300612</eisbn><eisbn>1467300632</eisbn><eisbn>9781467300636</eisbn><abstract>Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.</abstract><pub>IEEE</pub><doi>10.1109/ICCVW.2011.6130485</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467300624 |
ispartof | 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.1933-1940 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6130485 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Encoding Event detection Feature extraction Humans Vectors Visualization |
title | Multi-cue learning and visualization of unusual events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-cue%20learning%20and%20visualization%20of%20unusual%20events&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Computer%20Vision%20Workshops%20(ICCV%20Workshops)&rft.au=Schuster,%20R.&rft.date=2011-11&rft.spage=1933&rft.epage=1940&rft.pages=1933-1940&rft.isbn=1467300624&rft.isbn_list=9781467300629&rft_id=info:doi/10.1109/ICCVW.2011.6130485&rft_dat=%3Cieee_6IE%3E6130485%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467300616&rft.eisbn_list=9781467300612&rft.eisbn_list=1467300632&rft.eisbn_list=9781467300636&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6130485&rfr_iscdi=true |