Multi-cue learning and visualization of unusual events

Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schuster, R., Schulter, S., Poier, G., Hirzer, M., Birchbauer, J., Roth, P. M., Bischof, H., Winter, M., Schallauer, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1940
container_issue
container_start_page 1933
container_title
container_volume
creator Schuster, R.
Schulter, S.
Poier, G.
Hirzer, M.
Birchbauer, J.
Roth, P. M.
Bischof, H.
Winter, M.
Schallauer, P.
description Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.
doi_str_mv 10.1109/ICCVW.2011.6130485
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6130485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6130485</ieee_id><sourcerecordid>6130485</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3b8abcde43db8487324569d6a6da1cfdf32cf45f8d4d4fdbd9855045860d53973</originalsourceid><addsrcrecordid>eNpFj81KxDAUhSMiqOO8gG7yAq03TXKbLKX4MzDiZtDlkPYmEqkZaZoBfXoVBzybw3cWHxzGLgXUQoC9XnXd80vdgBA1CgnK6CN2LhS2EgAFHv9Do07ZMuc3-AmisQhnDB_LOMdqKJ6P3k0pplfuEvF9zMWN8cvNcZf4LvCSyu_C_d6nOV-wk-DG7JeHXrDN3e2me6jWT_er7mZdRQtzJXvj-oG8ktQbZVrZKI2W0CE5MQQKshmC0sGQIhWoJ2u0BqUNAmlpW7lgV3_a6L3ffkzx3U2f28NN-Q0qIUbe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-cue learning and visualization of unusual events</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schuster, R. ; Schulter, S. ; Poier, G. ; Hirzer, M. ; Birchbauer, J. ; Roth, P. M. ; Bischof, H. ; Winter, M. ; Schallauer, P.</creator><creatorcontrib>Schuster, R. ; Schulter, S. ; Poier, G. ; Hirzer, M. ; Birchbauer, J. ; Roth, P. M. ; Bischof, H. ; Winter, M. ; Schallauer, P.</creatorcontrib><description>Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.</description><identifier>ISBN: 1467300624</identifier><identifier>ISBN: 9781467300629</identifier><identifier>EISBN: 1467300616</identifier><identifier>EISBN: 9781467300612</identifier><identifier>EISBN: 1467300632</identifier><identifier>EISBN: 9781467300636</identifier><identifier>DOI: 10.1109/ICCVW.2011.6130485</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Encoding ; Event detection ; Feature extraction ; Humans ; Vectors ; Visualization</subject><ispartof>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.1933-1940</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6130485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6130485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schuster, R.</creatorcontrib><creatorcontrib>Schulter, S.</creatorcontrib><creatorcontrib>Poier, G.</creatorcontrib><creatorcontrib>Hirzer, M.</creatorcontrib><creatorcontrib>Birchbauer, J.</creatorcontrib><creatorcontrib>Roth, P. M.</creatorcontrib><creatorcontrib>Bischof, H.</creatorcontrib><creatorcontrib>Winter, M.</creatorcontrib><creatorcontrib>Schallauer, P.</creatorcontrib><title>Multi-cue learning and visualization of unusual events</title><title>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</title><addtitle>ICCVW</addtitle><description>Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.</description><subject>Cameras</subject><subject>Encoding</subject><subject>Event detection</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Vectors</subject><subject>Visualization</subject><isbn>1467300624</isbn><isbn>9781467300629</isbn><isbn>1467300616</isbn><isbn>9781467300612</isbn><isbn>1467300632</isbn><isbn>9781467300636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81KxDAUhSMiqOO8gG7yAq03TXKbLKX4MzDiZtDlkPYmEqkZaZoBfXoVBzybw3cWHxzGLgXUQoC9XnXd80vdgBA1CgnK6CN2LhS2EgAFHv9Do07ZMuc3-AmisQhnDB_LOMdqKJ6P3k0pplfuEvF9zMWN8cvNcZf4LvCSyu_C_d6nOV-wk-DG7JeHXrDN3e2me6jWT_er7mZdRQtzJXvj-oG8ktQbZVrZKI2W0CE5MQQKshmC0sGQIhWoJ2u0BqUNAmlpW7lgV3_a6L3ffkzx3U2f28NN-Q0qIUbe</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Schuster, R.</creator><creator>Schulter, S.</creator><creator>Poier, G.</creator><creator>Hirzer, M.</creator><creator>Birchbauer, J.</creator><creator>Roth, P. M.</creator><creator>Bischof, H.</creator><creator>Winter, M.</creator><creator>Schallauer, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Multi-cue learning and visualization of unusual events</title><author>Schuster, R. ; Schulter, S. ; Poier, G. ; Hirzer, M. ; Birchbauer, J. ; Roth, P. M. ; Bischof, H. ; Winter, M. ; Schallauer, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3b8abcde43db8487324569d6a6da1cfdf32cf45f8d4d4fdbd9855045860d53973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Encoding</topic><topic>Event detection</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Schuster, R.</creatorcontrib><creatorcontrib>Schulter, S.</creatorcontrib><creatorcontrib>Poier, G.</creatorcontrib><creatorcontrib>Hirzer, M.</creatorcontrib><creatorcontrib>Birchbauer, J.</creatorcontrib><creatorcontrib>Roth, P. M.</creatorcontrib><creatorcontrib>Bischof, H.</creatorcontrib><creatorcontrib>Winter, M.</creatorcontrib><creatorcontrib>Schallauer, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schuster, R.</au><au>Schulter, S.</au><au>Poier, G.</au><au>Hirzer, M.</au><au>Birchbauer, J.</au><au>Roth, P. M.</au><au>Bischof, H.</au><au>Winter, M.</au><au>Schallauer, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-cue learning and visualization of unusual events</atitle><btitle>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</btitle><stitle>ICCVW</stitle><date>2011-11</date><risdate>2011</risdate><spage>1933</spage><epage>1940</epage><pages>1933-1940</pages><isbn>1467300624</isbn><isbn>9781467300629</isbn><eisbn>1467300616</eisbn><eisbn>9781467300612</eisbn><eisbn>1467300632</eisbn><eisbn>9781467300636</eisbn><abstract>Unusual event detection, i.e., identifying unspecified rare/critical events, has become one of the major challenges in visual surveillance. The main solution for this problem is to describe local or global normalness and to report events that do not fit to the estimated models. The majority of existing approaches, however, is limited to a single description (e.g., either appearance or motion) and/or builds on inflexible (unsupervised) learning techniques, both clearly degrading the practical applicability. To overcome these limitations, we demonstrate a system that is capable of extracting and modeling several representations in parallel, while in addition allows for user interaction within a continuous learning setup. Novel yet intuitive concepts of result visualization and user interaction will be presented that allow for exploiting the underlying data.</abstract><pub>IEEE</pub><doi>10.1109/ICCVW.2011.6130485</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467300624
ispartof 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.1933-1940
issn
language eng
recordid cdi_ieee_primary_6130485
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Encoding
Event detection
Feature extraction
Humans
Vectors
Visualization
title Multi-cue learning and visualization of unusual events
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-cue%20learning%20and%20visualization%20of%20unusual%20events&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Computer%20Vision%20Workshops%20(ICCV%20Workshops)&rft.au=Schuster,%20R.&rft.date=2011-11&rft.spage=1933&rft.epage=1940&rft.pages=1933-1940&rft.isbn=1467300624&rft.isbn_list=9781467300629&rft_id=info:doi/10.1109/ICCVW.2011.6130485&rft_dat=%3Cieee_6IE%3E6130485%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467300616&rft.eisbn_list=9781467300612&rft.eisbn_list=1467300632&rft.eisbn_list=9781467300636&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6130485&rfr_iscdi=true