Consolidation of multiple depth maps

Consolidation of point clouds, including denoising, outlier removal and normal estimation, is an important pre-processing step for surface reconstruction techniques. We present a consolidation framework specialized on point clouds created by multiple frames of a depth camera. An adaptive view-depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reisner-Kollmann, I., Maierhofer, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1126
container_issue
container_start_page 1120
container_title
container_volume
creator Reisner-Kollmann, I.
Maierhofer, S.
description Consolidation of point clouds, including denoising, outlier removal and normal estimation, is an important pre-processing step for surface reconstruction techniques. We present a consolidation framework specialized on point clouds created by multiple frames of a depth camera. An adaptive view-dependent locally optimal projection operator denoises multiple depth maps while keeping their structure in two-dimensional grids. Depth cameras produce a systematic variation of noise scales along the depth axis. Adapting to different noise scales allows to remove noise in the point cloud and preserve well-defined details at the same time. Our framework provides additional consolidation steps for depth maps like normal estimation and outlier removal. We show how knowledge about the distribution of noise in the input data can be effectively used for improving point clouds.
doi_str_mv 10.1109/ICCVW.2011.6130375
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6130375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6130375</ieee_id><sourcerecordid>6130375</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1345-25d2972fe474dfcb235ca005a0fad789a45e90975985e701c7a153bea09972003</originalsourceid><addsrcrecordid>eNpFj0tLw0AUhUdEUGv_gG6ycJt47zwzSxl8FApufCzLbeYOjiRN6MSF_96CBc_m8C3OB0eIa4QGEfzdKoT3j0YCYmNRgXLmRFyitk4BWLSn_yD1uViW8gWHWNt6CxfiNoy7MvY50pzHXTWmavju5zz1XEWe5s9qoKlcibNEfeHlsRfi7fHhNTzX65enVbhf1xmVNrU0UXonE2unY-q2UpmOAAxBouhaT9qwB--Mbw07wM4RGrVlAn-YAaiFuPnzZmbeTPs80P5nc3ylfgE-Cz7N</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Consolidation of multiple depth maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Reisner-Kollmann, I. ; Maierhofer, S.</creator><creatorcontrib>Reisner-Kollmann, I. ; Maierhofer, S.</creatorcontrib><description>Consolidation of point clouds, including denoising, outlier removal and normal estimation, is an important pre-processing step for surface reconstruction techniques. We present a consolidation framework specialized on point clouds created by multiple frames of a depth camera. An adaptive view-dependent locally optimal projection operator denoises multiple depth maps while keeping their structure in two-dimensional grids. Depth cameras produce a systematic variation of noise scales along the depth axis. Adapting to different noise scales allows to remove noise in the point cloud and preserve well-defined details at the same time. Our framework provides additional consolidation steps for depth maps like normal estimation and outlier removal. We show how knowledge about the distribution of noise in the input data can be effectively used for improving point clouds.</description><identifier>ISBN: 1467300624</identifier><identifier>ISBN: 9781467300629</identifier><identifier>EISBN: 1467300616</identifier><identifier>EISBN: 9781467300612</identifier><identifier>EISBN: 1467300632</identifier><identifier>EISBN: 9781467300636</identifier><identifier>DOI: 10.1109/ICCVW.2011.6130375</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Estimation ; Face ; Noise ; Noise measurement ; Surface reconstruction ; Three dimensional displays</subject><ispartof>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.1120-1126</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6130375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6130375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reisner-Kollmann, I.</creatorcontrib><creatorcontrib>Maierhofer, S.</creatorcontrib><title>Consolidation of multiple depth maps</title><title>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</title><addtitle>ICCVW</addtitle><description>Consolidation of point clouds, including denoising, outlier removal and normal estimation, is an important pre-processing step for surface reconstruction techniques. We present a consolidation framework specialized on point clouds created by multiple frames of a depth camera. An adaptive view-dependent locally optimal projection operator denoises multiple depth maps while keeping their structure in two-dimensional grids. Depth cameras produce a systematic variation of noise scales along the depth axis. Adapting to different noise scales allows to remove noise in the point cloud and preserve well-defined details at the same time. Our framework provides additional consolidation steps for depth maps like normal estimation and outlier removal. We show how knowledge about the distribution of noise in the input data can be effectively used for improving point clouds.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Face</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Surface reconstruction</subject><subject>Three dimensional displays</subject><isbn>1467300624</isbn><isbn>9781467300629</isbn><isbn>1467300616</isbn><isbn>9781467300612</isbn><isbn>1467300632</isbn><isbn>9781467300636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLw0AUhUdEUGv_gG6ycJt47zwzSxl8FApufCzLbeYOjiRN6MSF_96CBc_m8C3OB0eIa4QGEfzdKoT3j0YCYmNRgXLmRFyitk4BWLSn_yD1uViW8gWHWNt6CxfiNoy7MvY50pzHXTWmavju5zz1XEWe5s9qoKlcibNEfeHlsRfi7fHhNTzX65enVbhf1xmVNrU0UXonE2unY-q2UpmOAAxBouhaT9qwB--Mbw07wM4RGrVlAn-YAaiFuPnzZmbeTPs80P5nc3ylfgE-Cz7N</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Reisner-Kollmann, I.</creator><creator>Maierhofer, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Consolidation of multiple depth maps</title><author>Reisner-Kollmann, I. ; Maierhofer, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1345-25d2972fe474dfcb235ca005a0fad789a45e90975985e701c7a153bea09972003</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Face</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Surface reconstruction</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Reisner-Kollmann, I.</creatorcontrib><creatorcontrib>Maierhofer, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reisner-Kollmann, I.</au><au>Maierhofer, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Consolidation of multiple depth maps</atitle><btitle>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</btitle><stitle>ICCVW</stitle><date>2011-11</date><risdate>2011</risdate><spage>1120</spage><epage>1126</epage><pages>1120-1126</pages><isbn>1467300624</isbn><isbn>9781467300629</isbn><eisbn>1467300616</eisbn><eisbn>9781467300612</eisbn><eisbn>1467300632</eisbn><eisbn>9781467300636</eisbn><abstract>Consolidation of point clouds, including denoising, outlier removal and normal estimation, is an important pre-processing step for surface reconstruction techniques. We present a consolidation framework specialized on point clouds created by multiple frames of a depth camera. An adaptive view-dependent locally optimal projection operator denoises multiple depth maps while keeping their structure in two-dimensional grids. Depth cameras produce a systematic variation of noise scales along the depth axis. Adapting to different noise scales allows to remove noise in the point cloud and preserve well-defined details at the same time. Our framework provides additional consolidation steps for depth maps like normal estimation and outlier removal. We show how knowledge about the distribution of noise in the input data can be effectively used for improving point clouds.</abstract><pub>IEEE</pub><doi>10.1109/ICCVW.2011.6130375</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467300624
ispartof 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.1120-1126
issn
language eng
recordid cdi_ieee_primary_6130375
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Estimation
Face
Noise
Noise measurement
Surface reconstruction
Three dimensional displays
title Consolidation of multiple depth maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Consolidation%20of%20multiple%20depth%20maps&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Computer%20Vision%20Workshops%20(ICCV%20Workshops)&rft.au=Reisner-Kollmann,%20I.&rft.date=2011-11&rft.spage=1120&rft.epage=1126&rft.pages=1120-1126&rft.isbn=1467300624&rft.isbn_list=9781467300629&rft_id=info:doi/10.1109/ICCVW.2011.6130375&rft_dat=%3Cieee_6IE%3E6130375%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467300616&rft.eisbn_list=9781467300612&rft.eisbn_list=1467300632&rft.eisbn_list=9781467300636&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6130375&rfr_iscdi=true