Indoor scene segmentation using a structured light sensor

In this paper we explore how a structured light depth sensor, in the form of the Microsoft Kinect, can assist with indoor scene segmentation. We use a CRF-based model to evaluate a range of different representations for depth information and propose a novel prior on 3D location. We introduce a new a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Silberman, N., Fergus, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue
container_start_page 601
container_title
container_volume
creator Silberman, N.
Fergus, R.
description In this paper we explore how a structured light depth sensor, in the form of the Microsoft Kinect, can assist with indoor scene segmentation. We use a CRF-based model to evaluate a range of different representations for depth information and propose a novel prior on 3D location. We introduce a new and challenging indoor scene dataset, complete with accurate depth maps and dense label coverage. Evaluating our model on this dataset reveals that the combination of depth and intensity images gives dramatic performance gains over intensity images alone. Our results clearly demonstrate the utility of structured light sensors for scene understanding.
doi_str_mv 10.1109/ICCVW.2011.6130298
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6130298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6130298</ieee_id><sourcerecordid>6130298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c139t-e3c948a05e3ce9ce5d570e2f0ca49d690d746ba3e1774279b16e2c82090837903</originalsourceid><addsrcrecordid>eNpFj09Lw0AUxFdEUGu_gF72CyS-_ZPdvKMEtYGCF22PZbt5jZF2I7ubg9_egAXnMvODYWAYuxdQCgH42DbNZltKEKI0QoHE-oLdCm2sAjDCXP6D1NdsmdIXzDKmRgM3DNvQjWPkyVMgnqg_UcguD2PgUxpCzx1POU4-T5E6fhz6zzy3QhrjHbs6uGOi5dkX7OPl-b1ZFeu317Z5WhdeKMwFKY-6dlDNgdBT1VUWSB7AO42dQeisNnunSFirpcW9MCR9LQGhVhZBLdjD3-5ARLvvOJxc_Nmdr6pfRMtHTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Indoor scene segmentation using a structured light sensor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Silberman, N. ; Fergus, R.</creator><creatorcontrib>Silberman, N. ; Fergus, R.</creatorcontrib><description>In this paper we explore how a structured light depth sensor, in the form of the Microsoft Kinect, can assist with indoor scene segmentation. We use a CRF-based model to evaluate a range of different representations for depth information and propose a novel prior on 3D location. We introduce a new and challenging indoor scene dataset, complete with accurate depth maps and dense label coverage. Evaluating our model on this dataset reveals that the combination of depth and intensity images gives dramatic performance gains over intensity images alone. Our results clearly demonstrate the utility of structured light sensors for scene understanding.</description><identifier>ISBN: 1467300624</identifier><identifier>ISBN: 9781467300629</identifier><identifier>EISBN: 1467300616</identifier><identifier>EISBN: 9781467300612</identifier><identifier>EISBN: 1467300632</identifier><identifier>EISBN: 9781467300636</identifier><identifier>DOI: 10.1109/ICCVW.2011.6130298</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Feature extraction ; Histograms ; Image edge detection ; Three dimensional displays ; Training</subject><ispartof>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.601-608</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c139t-e3c948a05e3ce9ce5d570e2f0ca49d690d746ba3e1774279b16e2c82090837903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6130298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6130298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Silberman, N.</creatorcontrib><creatorcontrib>Fergus, R.</creatorcontrib><title>Indoor scene segmentation using a structured light sensor</title><title>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</title><addtitle>ICCVW</addtitle><description>In this paper we explore how a structured light depth sensor, in the form of the Microsoft Kinect, can assist with indoor scene segmentation. We use a CRF-based model to evaluate a range of different representations for depth information and propose a novel prior on 3D location. We introduce a new and challenging indoor scene dataset, complete with accurate depth maps and dense label coverage. Evaluating our model on this dataset reveals that the combination of depth and intensity images gives dramatic performance gains over intensity images alone. Our results clearly demonstrate the utility of structured light sensors for scene understanding.</description><subject>Cameras</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Three dimensional displays</subject><subject>Training</subject><isbn>1467300624</isbn><isbn>9781467300629</isbn><isbn>1467300616</isbn><isbn>9781467300612</isbn><isbn>1467300632</isbn><isbn>9781467300636</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj09Lw0AUxFdEUGu_gF72CyS-_ZPdvKMEtYGCF22PZbt5jZF2I7ubg9_egAXnMvODYWAYuxdQCgH42DbNZltKEKI0QoHE-oLdCm2sAjDCXP6D1NdsmdIXzDKmRgM3DNvQjWPkyVMgnqg_UcguD2PgUxpCzx1POU4-T5E6fhz6zzy3QhrjHbs6uGOi5dkX7OPl-b1ZFeu317Z5WhdeKMwFKY-6dlDNgdBT1VUWSB7AO42dQeisNnunSFirpcW9MCR9LQGhVhZBLdjD3-5ARLvvOJxc_Nmdr6pfRMtHTQ</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Silberman, N.</creator><creator>Fergus, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Indoor scene segmentation using a structured light sensor</title><author>Silberman, N. ; Fergus, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c139t-e3c948a05e3ce9ce5d570e2f0ca49d690d746ba3e1774279b16e2c82090837903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Three dimensional displays</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Silberman, N.</creatorcontrib><creatorcontrib>Fergus, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Silberman, N.</au><au>Fergus, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Indoor scene segmentation using a structured light sensor</atitle><btitle>2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)</btitle><stitle>ICCVW</stitle><date>2011-11</date><risdate>2011</risdate><spage>601</spage><epage>608</epage><pages>601-608</pages><isbn>1467300624</isbn><isbn>9781467300629</isbn><eisbn>1467300616</eisbn><eisbn>9781467300612</eisbn><eisbn>1467300632</eisbn><eisbn>9781467300636</eisbn><abstract>In this paper we explore how a structured light depth sensor, in the form of the Microsoft Kinect, can assist with indoor scene segmentation. We use a CRF-based model to evaluate a range of different representations for depth information and propose a novel prior on 3D location. We introduce a new and challenging indoor scene dataset, complete with accurate depth maps and dense label coverage. Evaluating our model on this dataset reveals that the combination of depth and intensity images gives dramatic performance gains over intensity images alone. Our results clearly demonstrate the utility of structured light sensors for scene understanding.</abstract><pub>IEEE</pub><doi>10.1109/ICCVW.2011.6130298</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467300624
ispartof 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, p.601-608
issn
language eng
recordid cdi_ieee_primary_6130298
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Feature extraction
Histograms
Image edge detection
Three dimensional displays
Training
title Indoor scene segmentation using a structured light sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Indoor%20scene%20segmentation%20using%20a%20structured%20light%20sensor&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Computer%20Vision%20Workshops%20(ICCV%20Workshops)&rft.au=Silberman,%20N.&rft.date=2011-11&rft.spage=601&rft.epage=608&rft.pages=601-608&rft.isbn=1467300624&rft.isbn_list=9781467300629&rft_id=info:doi/10.1109/ICCVW.2011.6130298&rft_dat=%3Cieee_6IE%3E6130298%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467300616&rft.eisbn_list=9781467300612&rft.eisbn_list=1467300632&rft.eisbn_list=9781467300636&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6130298&rfr_iscdi=true