Green image segmentation analysis of Google Earth image to rank world universities using PHP and MATLAB

University ranking systems are some effort to list universities worldwide in to an order based on some predetermined parameters. The percentage of the green area in each university that is captured by satellite can be used as a world university ranking parameter. In this work, green images taken fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sari, R. F., Sulaiman, M., Fajar, M. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue
container_start_page 1170
container_title
container_volume
creator Sari, R. F.
Sulaiman, M.
Fajar, M. N.
description University ranking systems are some effort to list universities worldwide in to an order based on some predetermined parameters. The percentage of the green area in each university that is captured by satellite can be used as a world university ranking parameter. In this work, green images taken from Google Earth have been processed through a segmentation stage using hsv threshold method. Images from 200 university from various countries on five continents have been analyzed, after segmentation process. University satellite images are taken from Google Earth and 75% of them are captured in 2009 and 2010. The result shows that hsv thresholding method is 21% better than global thresholding method and 59% better than local thresholding method. On execution time analysis, web processing takes 19.5% longer than the processing that is done without web interface.
doi_str_mv 10.1109/TENCON.2011.6129296
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6129296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6129296</ieee_id><sourcerecordid>6129296</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8572ba6c86ae42ed34f79d9baae4f0f8b8657c30137679f71871ca67ac22531a3</originalsourceid><addsrcrecordid>eNpVUM1OAjEYrH-JBHkCLn2BxX7t9u-IBMEEgQOeSdn9dq0uXdOuGt7eTSQmzmUymclkMoSMgU0AmL3fzdezzXrCGcBEAbfcqgsystpALrVmXEp1SQYcpM1ELtnVP0-J6z8v57dklNIb66GYyYENSL2IiIH6o6uRJqyPGDrX-TZQF1xzSj7RtqKLtq0bpHMXu9dztmtpdOGdfrexKeln8F8Yk-88JvqZfKjpdrntO0r6PN2tpg935KZyTcLRmYfk5XG-my2z1WbxNJuuMg9adpmRmh-cKoxymHMsRV5pW9qD62XFKnMwSupCMBBaaVtpMBoKp7QrOJcCnBiS8W-vR8T9R-zHxtP-fJv4ARihXIk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Green image segmentation analysis of Google Earth image to rank world universities using PHP and MATLAB</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sari, R. F. ; Sulaiman, M. ; Fajar, M. N.</creator><creatorcontrib>Sari, R. F. ; Sulaiman, M. ; Fajar, M. N.</creatorcontrib><description>University ranking systems are some effort to list universities worldwide in to an order based on some predetermined parameters. The percentage of the green area in each university that is captured by satellite can be used as a world university ranking parameter. In this work, green images taken from Google Earth have been processed through a segmentation stage using hsv threshold method. Images from 200 university from various countries on five continents have been analyzed, after segmentation process. University satellite images are taken from Google Earth and 75% of them are captured in 2009 and 2010. The result shows that hsv thresholding method is 21% better than global thresholding method and 59% better than local thresholding method. On execution time analysis, web processing takes 19.5% longer than the processing that is done without web interface.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781457702563</identifier><identifier>ISBN: 1457702568</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 9781457702556</identifier><identifier>EISBN: 145770255X</identifier><identifier>EISBN: 9781457702549</identifier><identifier>EISBN: 1457702541</identifier><identifier>DOI: 10.1109/TENCON.2011.6129296</identifier><language>eng</language><publisher>IEEE</publisher><subject>Earth ; Educational institutions ; Google ; Google Earth ; Green Campus ; Green products ; Image color analysis ; Image Processing ; Image segmentation ; MATLAB ; University Ranking</subject><ispartof>TENCON 2011 - 2011 IEEE Region 10 Conference, 2011, p.1170-1174</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6129296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6129296$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sari, R. F.</creatorcontrib><creatorcontrib>Sulaiman, M.</creatorcontrib><creatorcontrib>Fajar, M. N.</creatorcontrib><title>Green image segmentation analysis of Google Earth image to rank world universities using PHP and MATLAB</title><title>TENCON 2011 - 2011 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>University ranking systems are some effort to list universities worldwide in to an order based on some predetermined parameters. The percentage of the green area in each university that is captured by satellite can be used as a world university ranking parameter. In this work, green images taken from Google Earth have been processed through a segmentation stage using hsv threshold method. Images from 200 university from various countries on five continents have been analyzed, after segmentation process. University satellite images are taken from Google Earth and 75% of them are captured in 2009 and 2010. The result shows that hsv thresholding method is 21% better than global thresholding method and 59% better than local thresholding method. On execution time analysis, web processing takes 19.5% longer than the processing that is done without web interface.</description><subject>Earth</subject><subject>Educational institutions</subject><subject>Google</subject><subject>Google Earth</subject><subject>Green Campus</subject><subject>Green products</subject><subject>Image color analysis</subject><subject>Image Processing</subject><subject>Image segmentation</subject><subject>MATLAB</subject><subject>University Ranking</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781457702563</isbn><isbn>1457702568</isbn><isbn>9781457702556</isbn><isbn>145770255X</isbn><isbn>9781457702549</isbn><isbn>1457702541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1OAjEYrH-JBHkCLn2BxX7t9u-IBMEEgQOeSdn9dq0uXdOuGt7eTSQmzmUymclkMoSMgU0AmL3fzdezzXrCGcBEAbfcqgsystpALrVmXEp1SQYcpM1ELtnVP0-J6z8v57dklNIb66GYyYENSL2IiIH6o6uRJqyPGDrX-TZQF1xzSj7RtqKLtq0bpHMXu9dztmtpdOGdfrexKeln8F8Yk-88JvqZfKjpdrntO0r6PN2tpg935KZyTcLRmYfk5XG-my2z1WbxNJuuMg9adpmRmh-cKoxymHMsRV5pW9qD62XFKnMwSupCMBBaaVtpMBoKp7QrOJcCnBiS8W-vR8T9R-zHxtP-fJv4ARihXIk</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Sari, R. F.</creator><creator>Sulaiman, M.</creator><creator>Fajar, M. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>Green image segmentation analysis of Google Earth image to rank world universities using PHP and MATLAB</title><author>Sari, R. F. ; Sulaiman, M. ; Fajar, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8572ba6c86ae42ed34f79d9baae4f0f8b8657c30137679f71871ca67ac22531a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Earth</topic><topic>Educational institutions</topic><topic>Google</topic><topic>Google Earth</topic><topic>Green Campus</topic><topic>Green products</topic><topic>Image color analysis</topic><topic>Image Processing</topic><topic>Image segmentation</topic><topic>MATLAB</topic><topic>University Ranking</topic><toplevel>online_resources</toplevel><creatorcontrib>Sari, R. F.</creatorcontrib><creatorcontrib>Sulaiman, M.</creatorcontrib><creatorcontrib>Fajar, M. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sari, R. F.</au><au>Sulaiman, M.</au><au>Fajar, M. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Green image segmentation analysis of Google Earth image to rank world universities using PHP and MATLAB</atitle><btitle>TENCON 2011 - 2011 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2011-11</date><risdate>2011</risdate><spage>1170</spage><epage>1174</epage><pages>1170-1174</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781457702563</isbn><isbn>1457702568</isbn><eisbn>9781457702556</eisbn><eisbn>145770255X</eisbn><eisbn>9781457702549</eisbn><eisbn>1457702541</eisbn><abstract>University ranking systems are some effort to list universities worldwide in to an order based on some predetermined parameters. The percentage of the green area in each university that is captured by satellite can be used as a world university ranking parameter. In this work, green images taken from Google Earth have been processed through a segmentation stage using hsv threshold method. Images from 200 university from various countries on five continents have been analyzed, after segmentation process. University satellite images are taken from Google Earth and 75% of them are captured in 2009 and 2010. The result shows that hsv thresholding method is 21% better than global thresholding method and 59% better than local thresholding method. On execution time analysis, web processing takes 19.5% longer than the processing that is done without web interface.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2011.6129296</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2011 - 2011 IEEE Region 10 Conference, 2011, p.1170-1174
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_6129296
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Earth
Educational institutions
Google
Google Earth
Green Campus
Green products
Image color analysis
Image Processing
Image segmentation
MATLAB
University Ranking
title Green image segmentation analysis of Google Earth image to rank world universities using PHP and MATLAB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Green%20image%20segmentation%20analysis%20of%20Google%20Earth%20image%20to%20rank%20world%20universities%20using%20PHP%20and%20MATLAB&rft.btitle=TENCON%202011%20-%202011%20IEEE%20Region%2010%20Conference&rft.au=Sari,%20R.%20F.&rft.date=2011-11&rft.spage=1170&rft.epage=1174&rft.pages=1170-1174&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781457702563&rft.isbn_list=1457702568&rft_id=info:doi/10.1109/TENCON.2011.6129296&rft_dat=%3Cieee_6IE%3E6129296%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702556&rft.eisbn_list=145770255X&rft.eisbn_list=9781457702549&rft.eisbn_list=1457702541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6129296&rfr_iscdi=true