Modeling of cognition using EEG: A review and a new approach

Understanding the secrets underlying the brain functioning would be the noble achievement of this era. Learning how brain learns would be the milestone to guide the researchers of artificial intelligence, neurology and psychology. With the advent of "Integrate and Fire" model of neuron pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dahal, N., Nandagopal, N., Nafalski, A., Nedic, Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue
container_start_page 1045
container_title
container_volume
creator Dahal, N.
Nandagopal, N.
Nafalski, A.
Nedic, Z.
description Understanding the secrets underlying the brain functioning would be the noble achievement of this era. Learning how brain learns would be the milestone to guide the researchers of artificial intelligence, neurology and psychology. With the advent of "Integrate and Fire" model of neuron proposed about a hundred years ago, the brain research has picked up its pace in the study of different aspects of brain functionality. Many cognitive architectures have been proposed with an aim of simulating and understanding human cognition. On the other hand, many technologies have emerged that can measure the parameters of the brain activity. Among them, Electroencephalogram (EEG) stands as a reliable tool in the study of brain functioning. Simplified wireless EEGs are readily available now which can send data recorded by its electrodes to a computer for further processing. We have chosen this tool to detect different aspects of cognition and to predict the brain functioning behind it. A lot of studies from the past two decades have already revealed varying EEG patterns related to cognition. In this paper, we have proposed to extract different features from visual, tactile, auditory and psychomotor stimuli to work on different cognitive aspects such as memory, emotion, arousal, fatigue and distraction and to investigate its affect on the EEG. A methodology to model cognitive functions by relating the varying event related potential, brain waves, spectral density and latency in EEG outcomes are then related with the stimuli features to predict the cognitive state of mind.
doi_str_mv 10.1109/TENCON.2011.6129270
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6129270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6129270</ieee_id><sourcerecordid>6129270</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-d8de4d21d737b3d0315b021a63360729f0dea12c27cdefc9cd191d9f7f0347873</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhM2fRFXyBL34BRJ213YcIy5VlBak0l7KuXJtpxiVJEoKiLeHigqJucxoPmkOw9gEIUMEc7uuluVqmREgZjmSIQ1nLDG6QKm0BlIqP2cjQmVSIRVc_GO5uPxjkq5ZMgyv8KMcCokwYvdPrQ_72Ox4W3PX7pp4iG3D34djVVXzOz7lffiI4ZPbxnPLm2Pqur617uWGXdV2P4Tk5GP2PKvW5UO6WM0fy-kijURwSH3hg_SEXgu9FR4Eqi0Q2lyIHDSZGnywSI6086F2xnk06E2taxBSF1qM2eR3N4YQNl0f32z_tTl9Ib4BG3NMWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling of cognition using EEG: A review and a new approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dahal, N. ; Nandagopal, N. ; Nafalski, A. ; Nedic, Z.</creator><creatorcontrib>Dahal, N. ; Nandagopal, N. ; Nafalski, A. ; Nedic, Z.</creatorcontrib><description>Understanding the secrets underlying the brain functioning would be the noble achievement of this era. Learning how brain learns would be the milestone to guide the researchers of artificial intelligence, neurology and psychology. With the advent of "Integrate and Fire" model of neuron proposed about a hundred years ago, the brain research has picked up its pace in the study of different aspects of brain functionality. Many cognitive architectures have been proposed with an aim of simulating and understanding human cognition. On the other hand, many technologies have emerged that can measure the parameters of the brain activity. Among them, Electroencephalogram (EEG) stands as a reliable tool in the study of brain functioning. Simplified wireless EEGs are readily available now which can send data recorded by its electrodes to a computer for further processing. We have chosen this tool to detect different aspects of cognition and to predict the brain functioning behind it. A lot of studies from the past two decades have already revealed varying EEG patterns related to cognition. In this paper, we have proposed to extract different features from visual, tactile, auditory and psychomotor stimuli to work on different cognitive aspects such as memory, emotion, arousal, fatigue and distraction and to investigate its affect on the EEG. A methodology to model cognitive functions by relating the varying event related potential, brain waves, spectral density and latency in EEG outcomes are then related with the stimuli features to predict the cognitive state of mind.</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781457702563</identifier><identifier>ISBN: 1457702568</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 9781457702556</identifier><identifier>EISBN: 145770255X</identifier><identifier>EISBN: 9781457702549</identifier><identifier>EISBN: 1457702541</identifier><identifier>DOI: 10.1109/TENCON.2011.6129270</identifier><language>eng</language><publisher>IEEE</publisher><subject>Augmented Cognition ; Brain modeling ; Cognition Modeling ; Computers ; EEG ; Electroencephalogram ; Electroencephalography ; Feature Extraction ; Neurophysiology ; Reliability ; Sleep ; Stimuli</subject><ispartof>TENCON 2011 - 2011 IEEE Region 10 Conference, 2011, p.1045-1049</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6129270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6129270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dahal, N.</creatorcontrib><creatorcontrib>Nandagopal, N.</creatorcontrib><creatorcontrib>Nafalski, A.</creatorcontrib><creatorcontrib>Nedic, Z.</creatorcontrib><title>Modeling of cognition using EEG: A review and a new approach</title><title>TENCON 2011 - 2011 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>Understanding the secrets underlying the brain functioning would be the noble achievement of this era. Learning how brain learns would be the milestone to guide the researchers of artificial intelligence, neurology and psychology. With the advent of "Integrate and Fire" model of neuron proposed about a hundred years ago, the brain research has picked up its pace in the study of different aspects of brain functionality. Many cognitive architectures have been proposed with an aim of simulating and understanding human cognition. On the other hand, many technologies have emerged that can measure the parameters of the brain activity. Among them, Electroencephalogram (EEG) stands as a reliable tool in the study of brain functioning. Simplified wireless EEGs are readily available now which can send data recorded by its electrodes to a computer for further processing. We have chosen this tool to detect different aspects of cognition and to predict the brain functioning behind it. A lot of studies from the past two decades have already revealed varying EEG patterns related to cognition. In this paper, we have proposed to extract different features from visual, tactile, auditory and psychomotor stimuli to work on different cognitive aspects such as memory, emotion, arousal, fatigue and distraction and to investigate its affect on the EEG. A methodology to model cognitive functions by relating the varying event related potential, brain waves, spectral density and latency in EEG outcomes are then related with the stimuli features to predict the cognitive state of mind.</description><subject>Augmented Cognition</subject><subject>Brain modeling</subject><subject>Cognition Modeling</subject><subject>Computers</subject><subject>EEG</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Feature Extraction</subject><subject>Neurophysiology</subject><subject>Reliability</subject><subject>Sleep</subject><subject>Stimuli</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781457702563</isbn><isbn>1457702568</isbn><isbn>9781457702556</isbn><isbn>145770255X</isbn><isbn>9781457702549</isbn><isbn>1457702541</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhM2fRFXyBL34BRJ213YcIy5VlBak0l7KuXJtpxiVJEoKiLeHigqJucxoPmkOw9gEIUMEc7uuluVqmREgZjmSIQ1nLDG6QKm0BlIqP2cjQmVSIRVc_GO5uPxjkq5ZMgyv8KMcCokwYvdPrQ_72Ox4W3PX7pp4iG3D34djVVXzOz7lffiI4ZPbxnPLm2Pqur617uWGXdV2P4Tk5GP2PKvW5UO6WM0fy-kijURwSH3hg_SEXgu9FR4Eqi0Q2lyIHDSZGnywSI6086F2xnk06E2taxBSF1qM2eR3N4YQNl0f32z_tTl9Ib4BG3NMWg</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Dahal, N.</creator><creator>Nandagopal, N.</creator><creator>Nafalski, A.</creator><creator>Nedic, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>Modeling of cognition using EEG: A review and a new approach</title><author>Dahal, N. ; Nandagopal, N. ; Nafalski, A. ; Nedic, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-d8de4d21d737b3d0315b021a63360729f0dea12c27cdefc9cd191d9f7f0347873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Augmented Cognition</topic><topic>Brain modeling</topic><topic>Cognition Modeling</topic><topic>Computers</topic><topic>EEG</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Feature Extraction</topic><topic>Neurophysiology</topic><topic>Reliability</topic><topic>Sleep</topic><topic>Stimuli</topic><toplevel>online_resources</toplevel><creatorcontrib>Dahal, N.</creatorcontrib><creatorcontrib>Nandagopal, N.</creatorcontrib><creatorcontrib>Nafalski, A.</creatorcontrib><creatorcontrib>Nedic, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dahal, N.</au><au>Nandagopal, N.</au><au>Nafalski, A.</au><au>Nedic, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling of cognition using EEG: A review and a new approach</atitle><btitle>TENCON 2011 - 2011 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2011-11</date><risdate>2011</risdate><spage>1045</spage><epage>1049</epage><pages>1045-1049</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781457702563</isbn><isbn>1457702568</isbn><eisbn>9781457702556</eisbn><eisbn>145770255X</eisbn><eisbn>9781457702549</eisbn><eisbn>1457702541</eisbn><abstract>Understanding the secrets underlying the brain functioning would be the noble achievement of this era. Learning how brain learns would be the milestone to guide the researchers of artificial intelligence, neurology and psychology. With the advent of "Integrate and Fire" model of neuron proposed about a hundred years ago, the brain research has picked up its pace in the study of different aspects of brain functionality. Many cognitive architectures have been proposed with an aim of simulating and understanding human cognition. On the other hand, many technologies have emerged that can measure the parameters of the brain activity. Among them, Electroencephalogram (EEG) stands as a reliable tool in the study of brain functioning. Simplified wireless EEGs are readily available now which can send data recorded by its electrodes to a computer for further processing. We have chosen this tool to detect different aspects of cognition and to predict the brain functioning behind it. A lot of studies from the past two decades have already revealed varying EEG patterns related to cognition. In this paper, we have proposed to extract different features from visual, tactile, auditory and psychomotor stimuli to work on different cognitive aspects such as memory, emotion, arousal, fatigue and distraction and to investigate its affect on the EEG. A methodology to model cognitive functions by relating the varying event related potential, brain waves, spectral density and latency in EEG outcomes are then related with the stimuli features to predict the cognitive state of mind.</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2011.6129270</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2011 - 2011 IEEE Region 10 Conference, 2011, p.1045-1049
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_6129270
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Augmented Cognition
Brain modeling
Cognition Modeling
Computers
EEG
Electroencephalogram
Electroencephalography
Feature Extraction
Neurophysiology
Reliability
Sleep
Stimuli
title Modeling of cognition using EEG: A review and a new approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20of%20cognition%20using%20EEG:%20A%20review%20and%20a%20new%20approach&rft.btitle=TENCON%202011%20-%202011%20IEEE%20Region%2010%20Conference&rft.au=Dahal,%20N.&rft.date=2011-11&rft.spage=1045&rft.epage=1049&rft.pages=1045-1049&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781457702563&rft.isbn_list=1457702568&rft_id=info:doi/10.1109/TENCON.2011.6129270&rft_dat=%3Cieee_6IE%3E6129270%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457702556&rft.eisbn_list=145770255X&rft.eisbn_list=9781457702549&rft.eisbn_list=1457702541&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6129270&rfr_iscdi=true