Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion

This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lakemond, R., Fookes, C., Sridharan, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue
container_start_page 524
container_title
container_volume
creator Lakemond, R.
Fookes, C.
Sridharan, S.
description This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.
doi_str_mv 10.1109/DICTA.2011.94
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6128714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6128714</ieee_id><sourcerecordid>6128714</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1294-a7995854435637762d8aee40f8bfd373f8b577316b205e3cd2351797404346a73</originalsourceid><addsrcrecordid>eNotj0tLw0AYRUdEUGuWrtzMH0ic92NZUq2BiqIV3JVp8gVGkkzITCv990b0bs7ici5chG4pKSgl9n5VldtlwQilhRVnKLPaEK2sFNIYdo6uqZBaM0LU5yXKYvwic5Sys3qFmtfJ1cnXrsNVP07hCD0MKeIU8LvvD11yA4RDxGXox0NyyYcBhxY_z43Pjx6-8RpCD2k6YTc0-M01fp7awBDxyscUpl_jBl20rouQ_XOBPh4ftuVTvnlZV-Vyk3vKrMidtlYaKQSXimutWGMcgCCt2bcN13zmfIRTtWdEAq8bxiXVVgsiuFBO8wW6-9v1ALAbJ9-76bRTlBlNBf8BUVRV_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creator><creatorcontrib>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creatorcontrib><description>This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.</description><identifier>ISBN: 145772006X</identifier><identifier>ISBN: 9781457720062</identifier><identifier>EISBN: 9780769545882</identifier><identifier>EISBN: 0769545882</identifier><identifier>DOI: 10.1109/DICTA.2011.94</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Convergence ; distortion modelling ; Equations ; Geometry ; lens distortion ; Lenses ; Noise ; Nonlinear distortion ; rectangular quadric eigenvalue problem</subject><ispartof>2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.524-529</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6128714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6128714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><title>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</title><title>2011 International Conference on Digital Image Computing: Techniques and Applications</title><addtitle>dicta</addtitle><description>This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.</description><subject>Computational modeling</subject><subject>Convergence</subject><subject>distortion modelling</subject><subject>Equations</subject><subject>Geometry</subject><subject>lens distortion</subject><subject>Lenses</subject><subject>Noise</subject><subject>Nonlinear distortion</subject><subject>rectangular quadric eigenvalue problem</subject><isbn>145772006X</isbn><isbn>9781457720062</isbn><isbn>9780769545882</isbn><isbn>0769545882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AYRUdEUGuWrtzMH0ic92NZUq2BiqIV3JVp8gVGkkzITCv990b0bs7ici5chG4pKSgl9n5VldtlwQilhRVnKLPaEK2sFNIYdo6uqZBaM0LU5yXKYvwic5Sys3qFmtfJ1cnXrsNVP07hCD0MKeIU8LvvD11yA4RDxGXox0NyyYcBhxY_z43Pjx6-8RpCD2k6YTc0-M01fp7awBDxyscUpl_jBl20rouQ_XOBPh4ftuVTvnlZV-Vyk3vKrMidtlYaKQSXimutWGMcgCCt2bcN13zmfIRTtWdEAq8bxiXVVgsiuFBO8wW6-9v1ALAbJ9-76bRTlBlNBf8BUVRV_A</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Lakemond, R.</creator><creator>Fookes, C.</creator><creator>Sridharan, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</title><author>Lakemond, R. ; Fookes, C. ; Sridharan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1294-a7995854435637762d8aee40f8bfd373f8b577316b205e3cd2351797404346a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Convergence</topic><topic>distortion modelling</topic><topic>Equations</topic><topic>Geometry</topic><topic>lens distortion</topic><topic>Lenses</topic><topic>Noise</topic><topic>Nonlinear distortion</topic><topic>rectangular quadric eigenvalue problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lakemond, R.</au><au>Fookes, C.</au><au>Sridharan, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</atitle><btitle>2011 International Conference on Digital Image Computing: Techniques and Applications</btitle><stitle>dicta</stitle><date>2011-12</date><risdate>2011</risdate><spage>524</spage><epage>529</epage><pages>524-529</pages><isbn>145772006X</isbn><isbn>9781457720062</isbn><eisbn>9780769545882</eisbn><eisbn>0769545882</eisbn><abstract>This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.</abstract><pub>IEEE</pub><doi>10.1109/DICTA.2011.94</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 145772006X
ispartof 2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.524-529
issn
language eng
recordid cdi_ieee_primary_6128714
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Convergence
distortion modelling
Equations
Geometry
lens distortion
Lenses
Noise
Nonlinear distortion
rectangular quadric eigenvalue problem
title Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20Improvements%20to%20Simultaneous%20Computation%20of%20Multi-view%20Geometry%20and%20Radial%20Lens%20Distortion&rft.btitle=2011%20International%20Conference%20on%20Digital%20Image%20Computing:%20Techniques%20and%20Applications&rft.au=Lakemond,%20R.&rft.date=2011-12&rft.spage=524&rft.epage=529&rft.pages=524-529&rft.isbn=145772006X&rft.isbn_list=9781457720062&rft_id=info:doi/10.1109/DICTA.2011.94&rft_dat=%3Cieee_6IE%3E6128714%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545882&rft.eisbn_list=0769545882&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6128714&rfr_iscdi=true