Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion
This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigen...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | |
container_start_page | 524 |
container_title | |
container_volume | |
creator | Lakemond, R. Fookes, C. Sridharan, S. |
description | This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process. |
doi_str_mv | 10.1109/DICTA.2011.94 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6128714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6128714</ieee_id><sourcerecordid>6128714</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1294-a7995854435637762d8aee40f8bfd373f8b577316b205e3cd2351797404346a73</originalsourceid><addsrcrecordid>eNotj0tLw0AYRUdEUGuWrtzMH0ic92NZUq2BiqIV3JVp8gVGkkzITCv990b0bs7ici5chG4pKSgl9n5VldtlwQilhRVnKLPaEK2sFNIYdo6uqZBaM0LU5yXKYvwic5Sys3qFmtfJ1cnXrsNVP07hCD0MKeIU8LvvD11yA4RDxGXox0NyyYcBhxY_z43Pjx6-8RpCD2k6YTc0-M01fp7awBDxyscUpl_jBl20rouQ_XOBPh4ftuVTvnlZV-Vyk3vKrMidtlYaKQSXimutWGMcgCCt2bcN13zmfIRTtWdEAq8bxiXVVgsiuFBO8wW6-9v1ALAbJ9-76bRTlBlNBf8BUVRV_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creator><creatorcontrib>Lakemond, R. ; Fookes, C. ; Sridharan, S.</creatorcontrib><description>This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.</description><identifier>ISBN: 145772006X</identifier><identifier>ISBN: 9781457720062</identifier><identifier>EISBN: 9780769545882</identifier><identifier>EISBN: 0769545882</identifier><identifier>DOI: 10.1109/DICTA.2011.94</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Convergence ; distortion modelling ; Equations ; Geometry ; lens distortion ; Lenses ; Noise ; Nonlinear distortion ; rectangular quadric eigenvalue problem</subject><ispartof>2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.524-529</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6128714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6128714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><title>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</title><title>2011 International Conference on Digital Image Computing: Techniques and Applications</title><addtitle>dicta</addtitle><description>This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.</description><subject>Computational modeling</subject><subject>Convergence</subject><subject>distortion modelling</subject><subject>Equations</subject><subject>Geometry</subject><subject>lens distortion</subject><subject>Lenses</subject><subject>Noise</subject><subject>Nonlinear distortion</subject><subject>rectangular quadric eigenvalue problem</subject><isbn>145772006X</isbn><isbn>9781457720062</isbn><isbn>9780769545882</isbn><isbn>0769545882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AYRUdEUGuWrtzMH0ic92NZUq2BiqIV3JVp8gVGkkzITCv990b0bs7ici5chG4pKSgl9n5VldtlwQilhRVnKLPaEK2sFNIYdo6uqZBaM0LU5yXKYvwic5Sys3qFmtfJ1cnXrsNVP07hCD0MKeIU8LvvD11yA4RDxGXox0NyyYcBhxY_z43Pjx6-8RpCD2k6YTc0-M01fp7awBDxyscUpl_jBl20rouQ_XOBPh4ftuVTvnlZV-Vyk3vKrMidtlYaKQSXimutWGMcgCCt2bcN13zmfIRTtWdEAq8bxiXVVgsiuFBO8wW6-9v1ALAbJ9-76bRTlBlNBf8BUVRV_A</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Lakemond, R.</creator><creator>Fookes, C.</creator><creator>Sridharan, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</title><author>Lakemond, R. ; Fookes, C. ; Sridharan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1294-a7995854435637762d8aee40f8bfd373f8b577316b205e3cd2351797404346a73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Convergence</topic><topic>distortion modelling</topic><topic>Equations</topic><topic>Geometry</topic><topic>lens distortion</topic><topic>Lenses</topic><topic>Noise</topic><topic>Nonlinear distortion</topic><topic>rectangular quadric eigenvalue problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Lakemond, R.</creatorcontrib><creatorcontrib>Fookes, C.</creatorcontrib><creatorcontrib>Sridharan, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lakemond, R.</au><au>Fookes, C.</au><au>Sridharan, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion</atitle><btitle>2011 International Conference on Digital Image Computing: Techniques and Applications</btitle><stitle>dicta</stitle><date>2011-12</date><risdate>2011</risdate><spage>524</spage><epage>529</epage><pages>524-529</pages><isbn>145772006X</isbn><isbn>9781457720062</isbn><eisbn>9780769545882</eisbn><eisbn>0769545882</eisbn><abstract>This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.</abstract><pub>IEEE</pub><doi>10.1109/DICTA.2011.94</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 145772006X |
ispartof | 2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.524-529 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6128714 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Convergence distortion modelling Equations Geometry lens distortion Lenses Noise Nonlinear distortion rectangular quadric eigenvalue problem |
title | Practical Improvements to Simultaneous Computation of Multi-view Geometry and Radial Lens Distortion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20Improvements%20to%20Simultaneous%20Computation%20of%20Multi-view%20Geometry%20and%20Radial%20Lens%20Distortion&rft.btitle=2011%20International%20Conference%20on%20Digital%20Image%20Computing:%20Techniques%20and%20Applications&rft.au=Lakemond,%20R.&rft.date=2011-12&rft.spage=524&rft.epage=529&rft.pages=524-529&rft.isbn=145772006X&rft.isbn_list=9781457720062&rft_id=info:doi/10.1109/DICTA.2011.94&rft_dat=%3Cieee_6IE%3E6128714%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545882&rft.eisbn_list=0769545882&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6128714&rfr_iscdi=true |