In defense of soft-assignment coding

In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lingqiao Liu, Lei Wang, Xinwang Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2493
container_issue
container_start_page 2486
container_title
container_volume
creator Lingqiao Liu
Lei Wang
Xinwang Liu
description In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable to the state-of-the-art, leading to a coding scheme which perfectly combines computational efficiency and classification performance. To achieve this, we revisit soft-assignment coding from two key aspects: classification performance and probabilistic interpretation. For the first aspect, we argue that the inferiority of soft-assignment coding is due to its neglect of the underlying manifold structure of local features. To remedy this, we propose a simple modification to localize the soft-assignment coding, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage. For the second aspect, based on our probabilistic interpretation of the soft-assignment coding, we give a probabilistic explanation to the magic max-pooling operation, which has successfully been used by sparse or local coding schemes but still poorly understood. This probability explanation motivates us to develop a new mix-order max-pooling operation which further improves the classification performance of the proposed coding scheme. As experimentally demonstrated, the localized soft-assignment coding achieves the state-of-the-art classification performance with the highest computational efficiency among the existing coding schemes.
doi_str_mv 10.1109/ICCV.2011.6126534
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6126534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6126534</ieee_id><sourcerecordid>6126534</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-912a55a45439de924bf5a075239d53cfad6c6bbdfee0e4f8f6e9a36b455834913</originalsourceid><addsrcrecordid>eNo1j0tLw0AURscXmNb-AHGThduJ987MncdSQtVAwY26LZPkTonYRDrZ-O8tWFeHjwMfHCFuESpECA9NXX9UChAri8qSNmdigYacO1rAc1Eo7UE6AnMhVsH5f4d0KQokAkkmhGuxyPkTQAflbSHum7HsOfGYuZxSmac0y5jzsBv3PM5lN_XDuLsRVyl-ZV6duBTvT-u3-kVuXp-b-nEjB3Q0y4AqEkVDRoeegzJtogiO1HGS7lLsbWfbtk_MwCb5ZDlEbVtD5LUJqJfi7u93YObt92HYx8PP9lSrfwG0fkLq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>In defense of soft-assignment coding</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lingqiao Liu ; Lei Wang ; Xinwang Liu</creator><creatorcontrib>Lingqiao Liu ; Lei Wang ; Xinwang Liu</creatorcontrib><description>In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable to the state-of-the-art, leading to a coding scheme which perfectly combines computational efficiency and classification performance. To achieve this, we revisit soft-assignment coding from two key aspects: classification performance and probabilistic interpretation. For the first aspect, we argue that the inferiority of soft-assignment coding is due to its neglect of the underlying manifold structure of local features. To remedy this, we propose a simple modification to localize the soft-assignment coding, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage. For the second aspect, based on our probabilistic interpretation of the soft-assignment coding, we give a probabilistic explanation to the magic max-pooling operation, which has successfully been used by sparse or local coding schemes but still poorly understood. This probability explanation motivates us to develop a new mix-order max-pooling operation which further improves the classification performance of the proposed coding scheme. As experimentally demonstrated, the localized soft-assignment coding achieves the state-of-the-art classification performance with the highest computational efficiency among the existing coding schemes.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781457711015</identifier><identifier>ISBN: 145771101X</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1457711001</identifier><identifier>EISBN: 1457711028</identifier><identifier>EISBN: 9781457711022</identifier><identifier>EISBN: 9781457711008</identifier><identifier>DOI: 10.1109/ICCV.2011.6126534</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Encoding ; Feature extraction ; Image coding ; Probabilistic logic ; Vectors ; Visualization</subject><ispartof>2011 International Conference on Computer Vision, 2011, p.2486-2493</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6126534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6126534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lingqiao Liu</creatorcontrib><creatorcontrib>Lei Wang</creatorcontrib><creatorcontrib>Xinwang Liu</creatorcontrib><title>In defense of soft-assignment coding</title><title>2011 International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable to the state-of-the-art, leading to a coding scheme which perfectly combines computational efficiency and classification performance. To achieve this, we revisit soft-assignment coding from two key aspects: classification performance and probabilistic interpretation. For the first aspect, we argue that the inferiority of soft-assignment coding is due to its neglect of the underlying manifold structure of local features. To remedy this, we propose a simple modification to localize the soft-assignment coding, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage. For the second aspect, based on our probabilistic interpretation of the soft-assignment coding, we give a probabilistic explanation to the magic max-pooling operation, which has successfully been used by sparse or local coding schemes but still poorly understood. This probability explanation motivates us to develop a new mix-order max-pooling operation which further improves the classification performance of the proposed coding scheme. As experimentally demonstrated, the localized soft-assignment coding achieves the state-of-the-art classification performance with the highest computational efficiency among the existing coding schemes.</description><subject>Educational institutions</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>Probabilistic logic</subject><subject>Vectors</subject><subject>Visualization</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781457711015</isbn><isbn>145771101X</isbn><isbn>1457711001</isbn><isbn>1457711028</isbn><isbn>9781457711022</isbn><isbn>9781457711008</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AURscXmNb-AHGThduJ987MncdSQtVAwY26LZPkTonYRDrZ-O8tWFeHjwMfHCFuESpECA9NXX9UChAri8qSNmdigYacO1rAc1Eo7UE6AnMhVsH5f4d0KQokAkkmhGuxyPkTQAflbSHum7HsOfGYuZxSmac0y5jzsBv3PM5lN_XDuLsRVyl-ZV6duBTvT-u3-kVuXp-b-nEjB3Q0y4AqEkVDRoeegzJtogiO1HGS7lLsbWfbtk_MwCb5ZDlEbVtD5LUJqJfi7u93YObt92HYx8PP9lSrfwG0fkLq</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Lingqiao Liu</creator><creator>Lei Wang</creator><creator>Xinwang Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>In defense of soft-assignment coding</title><author>Lingqiao Liu ; Lei Wang ; Xinwang Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-912a55a45439de924bf5a075239d53cfad6c6bbdfee0e4f8f6e9a36b455834913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Educational institutions</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>Probabilistic logic</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lingqiao Liu</creatorcontrib><creatorcontrib>Lei Wang</creatorcontrib><creatorcontrib>Xinwang Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lingqiao Liu</au><au>Lei Wang</au><au>Xinwang Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>In defense of soft-assignment coding</atitle><btitle>2011 International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2011-11</date><risdate>2011</risdate><spage>2486</spage><epage>2493</epage><pages>2486-2493</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781457711015</isbn><isbn>145771101X</isbn><eisbn>1457711001</eisbn><eisbn>1457711028</eisbn><eisbn>9781457711022</eisbn><eisbn>9781457711008</eisbn><abstract>In object recognition, soft-assignment coding enjoys computational efficiency and conceptual simplicity. However, its classification performance is inferior to the newly developed sparse or local coding schemes. It would be highly desirable if its classification performance could become comparable to the state-of-the-art, leading to a coding scheme which perfectly combines computational efficiency and classification performance. To achieve this, we revisit soft-assignment coding from two key aspects: classification performance and probabilistic interpretation. For the first aspect, we argue that the inferiority of soft-assignment coding is due to its neglect of the underlying manifold structure of local features. To remedy this, we propose a simple modification to localize the soft-assignment coding, which surprisingly achieves comparable or even better performance than existing sparse or local coding schemes while maintaining its computational advantage. For the second aspect, based on our probabilistic interpretation of the soft-assignment coding, we give a probabilistic explanation to the magic max-pooling operation, which has successfully been used by sparse or local coding schemes but still poorly understood. This probability explanation motivates us to develop a new mix-order max-pooling operation which further improves the classification performance of the proposed coding scheme. As experimentally demonstrated, the localized soft-assignment coding achieves the state-of-the-art classification performance with the highest computational efficiency among the existing coding schemes.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2011.6126534</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2011 International Conference on Computer Vision, 2011, p.2486-2493
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_6126534
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Encoding
Feature extraction
Image coding
Probabilistic logic
Vectors
Visualization
title In defense of soft-assignment coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=In%20defense%20of%20soft-assignment%20coding&rft.btitle=2011%20International%20Conference%20on%20Computer%20Vision&rft.au=Lingqiao%20Liu&rft.date=2011-11&rft.spage=2486&rft.epage=2493&rft.pages=2486-2493&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781457711015&rft.isbn_list=145771101X&rft_id=info:doi/10.1109/ICCV.2011.6126534&rft_dat=%3Cieee_6IE%3E6126534%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457711001&rft.eisbn_list=1457711028&rft.eisbn_list=9781457711022&rft.eisbn_list=9781457711008&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6126534&rfr_iscdi=true