A graph-matching kernel for object categorization

This paper addresses the problem of category-level image classification. The underlying image model is a graph whose nodes correspond to a dense set of regions, and edges reflect the underlying grid structure of the image and act as springs to guarantee the geometric consistency of nearby regions du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Duchenne, O., Joulin, A., Ponce, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1799
container_issue
container_start_page 1792
container_title
container_volume
creator Duchenne, O.
Joulin, A.
Ponce, J.
description This paper addresses the problem of category-level image classification. The underlying image model is a graph whose nodes correspond to a dense set of regions, and edges reflect the underlying grid structure of the image and act as springs to guarantee the geometric consistency of nearby regions during matching. A fast approximate algorithm for matching the graphs associated with two images is presented. This algorithm is used to construct a kernel appropriate for SVM-based image classification, and experiments with the Caltech 101, Caltech 256, and Scenes datasets demonstrate performance that matches or exceeds the state of the art for methods using a single type of features.
doi_str_mv 10.1109/ICCV.2011.6126445
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6126445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6126445</ieee_id><sourcerecordid>6126445</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-6e2ee882b74f68a506718487eee694f9b381442c60e0464f8fdabbdb7c19ed403</originalsourceid><addsrcrecordid>eNo1j8lOw0AQRIdNwgn5AMTFP2DTPe7ZjpHFEikSF-Aaje0eZ0ISR7Yv8PVYIpzq8FRPVULcI-SI4B5XZfmZS0DMNUpNpC7EDEkZM1HAS5HIwkJmFNCVWDhj_xmqa5GgUpApcu5WzIZhB1A4aXUicJm2vT9ts4Mf6208tukX90fep6Hr067acT2mtR-57fr448fYHe_ETfD7gRfnnIuP56f38jVbv72syuU6i5JwzDRLZmtlZSho6xVog5asYWbtKLiqmAaSrDUwkKZgQ-OrqqlMjY4bgmIuHv68capsTn08-P57c75e_AL4z0fg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A graph-matching kernel for object categorization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duchenne, O. ; Joulin, A. ; Ponce, J.</creator><creatorcontrib>Duchenne, O. ; Joulin, A. ; Ponce, J.</creatorcontrib><description>This paper addresses the problem of category-level image classification. The underlying image model is a graph whose nodes correspond to a dense set of regions, and edges reflect the underlying grid structure of the image and act as springs to guarantee the geometric consistency of nearby regions during matching. A fast approximate algorithm for matching the graphs associated with two images is presented. This algorithm is used to construct a kernel appropriate for SVM-based image classification, and experiments with the Caltech 101, Caltech 256, and Scenes datasets demonstrate performance that matches or exceeds the state of the art for methods using a single type of features.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781457711015</identifier><identifier>ISBN: 145771101X</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1457711001</identifier><identifier>EISBN: 1457711028</identifier><identifier>EISBN: 9781457711022</identifier><identifier>EISBN: 9781457711008</identifier><identifier>DOI: 10.1109/ICCV.2011.6126445</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Image edge detection ; Image retrieval ; Kernel ; Optimization ; Support vector machines ; Vectors</subject><ispartof>2011 International Conference on Computer Vision, 2011, p.1792-1799</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6126445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6126445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duchenne, O.</creatorcontrib><creatorcontrib>Joulin, A.</creatorcontrib><creatorcontrib>Ponce, J.</creatorcontrib><title>A graph-matching kernel for object categorization</title><title>2011 International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>This paper addresses the problem of category-level image classification. The underlying image model is a graph whose nodes correspond to a dense set of regions, and edges reflect the underlying grid structure of the image and act as springs to guarantee the geometric consistency of nearby regions during matching. A fast approximate algorithm for matching the graphs associated with two images is presented. This algorithm is used to construct a kernel appropriate for SVM-based image classification, and experiments with the Caltech 101, Caltech 256, and Scenes datasets demonstrate performance that matches or exceeds the state of the art for methods using a single type of features.</description><subject>Approximation algorithms</subject><subject>Image edge detection</subject><subject>Image retrieval</subject><subject>Kernel</subject><subject>Optimization</subject><subject>Support vector machines</subject><subject>Vectors</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781457711015</isbn><isbn>145771101X</isbn><isbn>1457711001</isbn><isbn>1457711028</isbn><isbn>9781457711022</isbn><isbn>9781457711008</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8lOw0AQRIdNwgn5AMTFP2DTPe7ZjpHFEikSF-Aaje0eZ0ISR7Yv8PVYIpzq8FRPVULcI-SI4B5XZfmZS0DMNUpNpC7EDEkZM1HAS5HIwkJmFNCVWDhj_xmqa5GgUpApcu5WzIZhB1A4aXUicJm2vT9ts4Mf6208tukX90fep6Hr067acT2mtR-57fr448fYHe_ETfD7gRfnnIuP56f38jVbv72syuU6i5JwzDRLZmtlZSho6xVog5asYWbtKLiqmAaSrDUwkKZgQ-OrqqlMjY4bgmIuHv68capsTn08-P57c75e_AL4z0fg</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Duchenne, O.</creator><creator>Joulin, A.</creator><creator>Ponce, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>A graph-matching kernel for object categorization</title><author>Duchenne, O. ; Joulin, A. ; Ponce, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-6e2ee882b74f68a506718487eee694f9b381442c60e0464f8fdabbdb7c19ed403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation algorithms</topic><topic>Image edge detection</topic><topic>Image retrieval</topic><topic>Kernel</topic><topic>Optimization</topic><topic>Support vector machines</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Duchenne, O.</creatorcontrib><creatorcontrib>Joulin, A.</creatorcontrib><creatorcontrib>Ponce, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duchenne, O.</au><au>Joulin, A.</au><au>Ponce, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A graph-matching kernel for object categorization</atitle><btitle>2011 International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2011-11</date><risdate>2011</risdate><spage>1792</spage><epage>1799</epage><pages>1792-1799</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781457711015</isbn><isbn>145771101X</isbn><eisbn>1457711001</eisbn><eisbn>1457711028</eisbn><eisbn>9781457711022</eisbn><eisbn>9781457711008</eisbn><abstract>This paper addresses the problem of category-level image classification. The underlying image model is a graph whose nodes correspond to a dense set of regions, and edges reflect the underlying grid structure of the image and act as springs to guarantee the geometric consistency of nearby regions during matching. A fast approximate algorithm for matching the graphs associated with two images is presented. This algorithm is used to construct a kernel appropriate for SVM-based image classification, and experiments with the Caltech 101, Caltech 256, and Scenes datasets demonstrate performance that matches or exceeds the state of the art for methods using a single type of features.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2011.6126445</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2011 International Conference on Computer Vision, 2011, p.1792-1799
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_6126445
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Image edge detection
Image retrieval
Kernel
Optimization
Support vector machines
Vectors
title A graph-matching kernel for object categorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20graph-matching%20kernel%20for%20object%20categorization&rft.btitle=2011%20International%20Conference%20on%20Computer%20Vision&rft.au=Duchenne,%20O.&rft.date=2011-11&rft.spage=1792&rft.epage=1799&rft.pages=1792-1799&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781457711015&rft.isbn_list=145771101X&rft_id=info:doi/10.1109/ICCV.2011.6126445&rft_dat=%3Cieee_6IE%3E6126445%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457711001&rft.eisbn_list=1457711028&rft.eisbn_list=9781457711022&rft.eisbn_list=9781457711008&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6126445&rfr_iscdi=true