Positive definite dictionary learning for region covariances

Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sivalingam, R., Boley, D., Morellas, V., Papanikolopoulos, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1019
container_issue
container_start_page 1013
container_title
container_volume
creator Sivalingam, R.
Boley, D.
Morellas, V.
Papanikolopoulos, N.
description Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for positive definite matrices. While in earlier work [1], the dictionary was pre-determined, it is clearly advantageous to learn a concise dictionary adaptively from the data at hand. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between the sparse coding and dictionary update stages, and two different atom update methods are described. The online versions of the dictionary update techniques are also outlined. Experimental results demonstrate that the proposed learning methods yield better dictionaries for positive definite sparse coding. The learned dictionaries are applied to texture and face data, leading to improved classification accuracy and strong detection performance, respectively.
doi_str_mv 10.1109/ICCV.2011.6126346
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6126346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6126346</ieee_id><sourcerecordid>6126346</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-2b52bf9f7fb8053c849220c601593cb7694c9e7f60bb53de13a97816c06b22a13</originalsourceid><addsrcrecordid>eNo1kNtKAzEYhOMJ3NY-gHizL7Dr_-cc8EaWqoWCXqi3JUmTEqm7kiwF394V69UMMzB8DCHXCC0imNtV1723FBBbiVQyLk_IDLlQamoBT0lFmYZGCeBnZGGU_u9QnJMKhYBGcGMuyayUDwBmqJYVuXsZShrTIdTbEFOfxskkP6aht_m73geb-9Tv6jjkOofdFNd-ONicbO9DuSIX0e5LWBx1Tt4elq_dU7N-flx19-smUdRjQ52gLpqootMgmNfcUApeTmSGeaek4d4EFSU4J9g2ILO_-NKDdJRaZHNy87ebQgibr5w-J7jN8QX2AxnPS-8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Positive definite dictionary learning for region covariances</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sivalingam, R. ; Boley, D. ; Morellas, V. ; Papanikolopoulos, N.</creator><creatorcontrib>Sivalingam, R. ; Boley, D. ; Morellas, V. ; Papanikolopoulos, N.</creatorcontrib><description>Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for positive definite matrices. While in earlier work [1], the dictionary was pre-determined, it is clearly advantageous to learn a concise dictionary adaptively from the data at hand. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between the sparse coding and dictionary update stages, and two different atom update methods are described. The online versions of the dictionary update techniques are also outlined. Experimental results demonstrate that the proposed learning methods yield better dictionaries for positive definite sparse coding. The learned dictionaries are applied to texture and face data, leading to improved classification accuracy and strong detection performance, respectively.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781457711015</identifier><identifier>ISBN: 145771101X</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1457711001</identifier><identifier>EISBN: 1457711028</identifier><identifier>EISBN: 9781457711022</identifier><identifier>EISBN: 9781457711008</identifier><identifier>DOI: 10.1109/ICCV.2011.6126346</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dictionaries ; Encoding ; Learning systems ; Sparse matrices ; Symmetric matrices ; Training ; Vectors</subject><ispartof>2011 International Conference on Computer Vision, 2011, p.1013-1019</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6126346$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6126346$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sivalingam, R.</creatorcontrib><creatorcontrib>Boley, D.</creatorcontrib><creatorcontrib>Morellas, V.</creatorcontrib><creatorcontrib>Papanikolopoulos, N.</creatorcontrib><title>Positive definite dictionary learning for region covariances</title><title>2011 International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for positive definite matrices. While in earlier work [1], the dictionary was pre-determined, it is clearly advantageous to learn a concise dictionary adaptively from the data at hand. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between the sparse coding and dictionary update stages, and two different atom update methods are described. The online versions of the dictionary update techniques are also outlined. Experimental results demonstrate that the proposed learning methods yield better dictionaries for positive definite sparse coding. The learned dictionaries are applied to texture and face data, leading to improved classification accuracy and strong detection performance, respectively.</description><subject>Dictionaries</subject><subject>Encoding</subject><subject>Learning systems</subject><subject>Sparse matrices</subject><subject>Symmetric matrices</subject><subject>Training</subject><subject>Vectors</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781457711015</isbn><isbn>145771101X</isbn><isbn>1457711001</isbn><isbn>1457711028</isbn><isbn>9781457711022</isbn><isbn>9781457711008</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKAzEYhOMJ3NY-gHizL7Dr_-cc8EaWqoWCXqi3JUmTEqm7kiwF394V69UMMzB8DCHXCC0imNtV1723FBBbiVQyLk_IDLlQamoBT0lFmYZGCeBnZGGU_u9QnJMKhYBGcGMuyayUDwBmqJYVuXsZShrTIdTbEFOfxskkP6aht_m73geb-9Tv6jjkOofdFNd-ONicbO9DuSIX0e5LWBx1Tt4elq_dU7N-flx19-smUdRjQ52gLpqootMgmNfcUApeTmSGeaek4d4EFSU4J9g2ILO_-NKDdJRaZHNy87ebQgibr5w-J7jN8QX2AxnPS-8</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Sivalingam, R.</creator><creator>Boley, D.</creator><creator>Morellas, V.</creator><creator>Papanikolopoulos, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Positive definite dictionary learning for region covariances</title><author>Sivalingam, R. ; Boley, D. ; Morellas, V. ; Papanikolopoulos, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-2b52bf9f7fb8053c849220c601593cb7694c9e7f60bb53de13a97816c06b22a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Dictionaries</topic><topic>Encoding</topic><topic>Learning systems</topic><topic>Sparse matrices</topic><topic>Symmetric matrices</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Sivalingam, R.</creatorcontrib><creatorcontrib>Boley, D.</creatorcontrib><creatorcontrib>Morellas, V.</creatorcontrib><creatorcontrib>Papanikolopoulos, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sivalingam, R.</au><au>Boley, D.</au><au>Morellas, V.</au><au>Papanikolopoulos, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Positive definite dictionary learning for region covariances</atitle><btitle>2011 International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>1013</spage><epage>1019</epage><pages>1013-1019</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781457711015</isbn><isbn>145771101X</isbn><eisbn>1457711001</eisbn><eisbn>1457711028</eisbn><eisbn>9781457711022</eisbn><eisbn>9781457711008</eisbn><abstract>Sparse models have proven to be extremely successful in image processing and computer vision, and most efforts have been focused on sparse representation of vectors. The success of sparse modeling and the popularity of region covariances have inspired the development of sparse coding approaches for positive definite matrices. While in earlier work [1], the dictionary was pre-determined, it is clearly advantageous to learn a concise dictionary adaptively from the data at hand. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between the sparse coding and dictionary update stages, and two different atom update methods are described. The online versions of the dictionary update techniques are also outlined. Experimental results demonstrate that the proposed learning methods yield better dictionaries for positive definite sparse coding. The learned dictionaries are applied to texture and face data, leading to improved classification accuracy and strong detection performance, respectively.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2011.6126346</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2011 International Conference on Computer Vision, 2011, p.1013-1019
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_6126346
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dictionaries
Encoding
Learning systems
Sparse matrices
Symmetric matrices
Training
Vectors
title Positive definite dictionary learning for region covariances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Positive%20definite%20dictionary%20learning%20for%20region%20covariances&rft.btitle=2011%20International%20Conference%20on%20Computer%20Vision&rft.au=Sivalingam,%20R.&rft.date=2011-01-01&rft.spage=1013&rft.epage=1019&rft.pages=1013-1019&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781457711015&rft.isbn_list=145771101X&rft_id=info:doi/10.1109/ICCV.2011.6126346&rft_dat=%3Cieee_6IE%3E6126346%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457711001&rft.eisbn_list=1457711028&rft.eisbn_list=9781457711022&rft.eisbn_list=9781457711008&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6126346&rfr_iscdi=true