Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes

We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., Lepetit, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue
container_start_page 858
container_title
container_volume
creator Hinterstoisser, S.
Holzer, S.
Cagniart, C.
Ilic, S.
Konolige, K.
Navab, N.
Lepetit, V.
description We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.
doi_str_mv 10.1109/ICCV.2011.6126326
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6126326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6126326</ieee_id><sourcerecordid>6126326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-dd604b224770db9bbd7ea41b280b8f9686d44f86ea20af2cc867a3a520e470473</originalsourceid><addsrcrecordid>eNo10MlOwzAYBGCzSbSlD4C4-AVcfi_xckQRS6UiLsC12PEfkcptUOwi-vZEopzm8I3mMIRcc1hwDu52WdfvCwGcLzQXWgp9QqZcVcaMCvyUTIS0wEwF6ozMnbH_xqtzMuFVBaxSzl2Sac4bAOmE1RPy8bxPpdv20SdacPuVfMFM236gA_rERkIasWBTun5H-3Ys_ZT9gCxhzrQPm1Ey7Xb0E_13lw60SftScMBIc4M7zFfkovUp4_yYM_L2cP9aP7HVy-OyvluxRghZWIwaVBBCGQMxuBCiQa94EBaCbZ22OirVWo1egG9F01htvPSVAFQGlJEzcvO32yHi-mvotn44rI9PyV_lLVns</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hinterstoisser, S. ; Holzer, S. ; Cagniart, C. ; Ilic, S. ; Konolige, K. ; Navab, N. ; Lepetit, V.</creator><creatorcontrib>Hinterstoisser, S. ; Holzer, S. ; Cagniart, C. ; Ilic, S. ; Konolige, K. ; Navab, N. ; Lepetit, V.</creatorcontrib><description>We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781457711015</identifier><identifier>ISBN: 145771101X</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1457711001</identifier><identifier>EISBN: 1457711028</identifier><identifier>EISBN: 9781457711022</identifier><identifier>EISBN: 9781457711008</identifier><identifier>DOI: 10.1109/ICCV.2011.6126326</identifier><language>eng</language><publisher>IEEE</publisher><subject>Robustness</subject><ispartof>2011 International Conference on Computer Vision, 2011, p.858-865</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-dd604b224770db9bbd7ea41b280b8f9686d44f86ea20af2cc867a3a520e470473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6126326$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6126326$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hinterstoisser, S.</creatorcontrib><creatorcontrib>Holzer, S.</creatorcontrib><creatorcontrib>Cagniart, C.</creatorcontrib><creatorcontrib>Ilic, S.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><creatorcontrib>Lepetit, V.</creatorcontrib><title>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</title><title>2011 International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.</description><subject>Robustness</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781457711015</isbn><isbn>145771101X</isbn><isbn>1457711001</isbn><isbn>1457711028</isbn><isbn>9781457711022</isbn><isbn>9781457711008</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo10MlOwzAYBGCzSbSlD4C4-AVcfi_xckQRS6UiLsC12PEfkcptUOwi-vZEopzm8I3mMIRcc1hwDu52WdfvCwGcLzQXWgp9QqZcVcaMCvyUTIS0wEwF6ozMnbH_xqtzMuFVBaxSzl2Sac4bAOmE1RPy8bxPpdv20SdacPuVfMFM236gA_rERkIasWBTun5H-3Ys_ZT9gCxhzrQPm1Ey7Xb0E_13lw60SftScMBIc4M7zFfkovUp4_yYM_L2cP9aP7HVy-OyvluxRghZWIwaVBBCGQMxuBCiQa94EBaCbZ22OirVWo1egG9F01htvPSVAFQGlJEzcvO32yHi-mvotn44rI9PyV_lLVns</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Hinterstoisser, S.</creator><creator>Holzer, S.</creator><creator>Cagniart, C.</creator><creator>Ilic, S.</creator><creator>Konolige, K.</creator><creator>Navab, N.</creator><creator>Lepetit, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</title><author>Hinterstoisser, S. ; Holzer, S. ; Cagniart, C. ; Ilic, S. ; Konolige, K. ; Navab, N. ; Lepetit, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-dd604b224770db9bbd7ea41b280b8f9686d44f86ea20af2cc867a3a520e470473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinterstoisser, S.</creatorcontrib><creatorcontrib>Holzer, S.</creatorcontrib><creatorcontrib>Cagniart, C.</creatorcontrib><creatorcontrib>Ilic, S.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><creatorcontrib>Lepetit, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hinterstoisser, S.</au><au>Holzer, S.</au><au>Cagniart, C.</au><au>Ilic, S.</au><au>Konolige, K.</au><au>Navab, N.</au><au>Lepetit, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</atitle><btitle>2011 International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2011-11</date><risdate>2011</risdate><spage>858</spage><epage>865</epage><pages>858-865</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781457711015</isbn><isbn>145771101X</isbn><eisbn>1457711001</eisbn><eisbn>1457711028</eisbn><eisbn>9781457711022</eisbn><eisbn>9781457711008</eisbn><abstract>We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2011.6126326</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2011 International Conference on Computer Vision, 2011, p.858-865
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_6126326
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Robustness
title Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T01%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multimodal%20templates%20for%20real-time%20detection%20of%20texture-less%20objects%20in%20heavily%20cluttered%20scenes&rft.btitle=2011%20International%20Conference%20on%20Computer%20Vision&rft.au=Hinterstoisser,%20S.&rft.date=2011-11&rft.spage=858&rft.epage=865&rft.pages=858-865&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781457711015&rft.isbn_list=145771101X&rft_id=info:doi/10.1109/ICCV.2011.6126326&rft_dat=%3Cieee_6IE%3E6126326%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457711001&rft.eisbn_list=1457711028&rft.eisbn_list=9781457711022&rft.eisbn_list=9781457711008&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6126326&rfr_iscdi=true