Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes
We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage,...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 865 |
---|---|
container_issue | |
container_start_page | 858 |
container_title | |
container_volume | |
creator | Hinterstoisser, S. Holzer, S. Cagniart, C. Ilic, S. Konolige, K. Navab, N. Lepetit, V. |
description | We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities. |
doi_str_mv | 10.1109/ICCV.2011.6126326 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6126326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6126326</ieee_id><sourcerecordid>6126326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-dd604b224770db9bbd7ea41b280b8f9686d44f86ea20af2cc867a3a520e470473</originalsourceid><addsrcrecordid>eNo10MlOwzAYBGCzSbSlD4C4-AVcfi_xckQRS6UiLsC12PEfkcptUOwi-vZEopzm8I3mMIRcc1hwDu52WdfvCwGcLzQXWgp9QqZcVcaMCvyUTIS0wEwF6ozMnbH_xqtzMuFVBaxSzl2Sac4bAOmE1RPy8bxPpdv20SdacPuVfMFM236gA_rERkIasWBTun5H-3Ys_ZT9gCxhzrQPm1Ey7Xb0E_13lw60SftScMBIc4M7zFfkovUp4_yYM_L2cP9aP7HVy-OyvluxRghZWIwaVBBCGQMxuBCiQa94EBaCbZ22OirVWo1egG9F01htvPSVAFQGlJEzcvO32yHi-mvotn44rI9PyV_lLVns</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hinterstoisser, S. ; Holzer, S. ; Cagniart, C. ; Ilic, S. ; Konolige, K. ; Navab, N. ; Lepetit, V.</creator><creatorcontrib>Hinterstoisser, S. ; Holzer, S. ; Cagniart, C. ; Ilic, S. ; Konolige, K. ; Navab, N. ; Lepetit, V.</creatorcontrib><description>We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.</description><identifier>ISSN: 1550-5499</identifier><identifier>ISBN: 9781457711015</identifier><identifier>ISBN: 145771101X</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1457711001</identifier><identifier>EISBN: 1457711028</identifier><identifier>EISBN: 9781457711022</identifier><identifier>EISBN: 9781457711008</identifier><identifier>DOI: 10.1109/ICCV.2011.6126326</identifier><language>eng</language><publisher>IEEE</publisher><subject>Robustness</subject><ispartof>2011 International Conference on Computer Vision, 2011, p.858-865</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-dd604b224770db9bbd7ea41b280b8f9686d44f86ea20af2cc867a3a520e470473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6126326$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6126326$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hinterstoisser, S.</creatorcontrib><creatorcontrib>Holzer, S.</creatorcontrib><creatorcontrib>Cagniart, C.</creatorcontrib><creatorcontrib>Ilic, S.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><creatorcontrib>Lepetit, V.</creatorcontrib><title>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</title><title>2011 International Conference on Computer Vision</title><addtitle>ICCV</addtitle><description>We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.</description><subject>Robustness</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>9781457711015</isbn><isbn>145771101X</isbn><isbn>1457711001</isbn><isbn>1457711028</isbn><isbn>9781457711022</isbn><isbn>9781457711008</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo10MlOwzAYBGCzSbSlD4C4-AVcfi_xckQRS6UiLsC12PEfkcptUOwi-vZEopzm8I3mMIRcc1hwDu52WdfvCwGcLzQXWgp9QqZcVcaMCvyUTIS0wEwF6ozMnbH_xqtzMuFVBaxSzl2Sac4bAOmE1RPy8bxPpdv20SdacPuVfMFM236gA_rERkIasWBTun5H-3Ys_ZT9gCxhzrQPm1Ey7Xb0E_13lw60SftScMBIc4M7zFfkovUp4_yYM_L2cP9aP7HVy-OyvluxRghZWIwaVBBCGQMxuBCiQa94EBaCbZ22OirVWo1egG9F01htvPSVAFQGlJEzcvO32yHi-mvotn44rI9PyV_lLVns</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Hinterstoisser, S.</creator><creator>Holzer, S.</creator><creator>Cagniart, C.</creator><creator>Ilic, S.</creator><creator>Konolige, K.</creator><creator>Navab, N.</creator><creator>Lepetit, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</title><author>Hinterstoisser, S. ; Holzer, S. ; Cagniart, C. ; Ilic, S. ; Konolige, K. ; Navab, N. ; Lepetit, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-dd604b224770db9bbd7ea41b280b8f9686d44f86ea20af2cc867a3a520e470473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinterstoisser, S.</creatorcontrib><creatorcontrib>Holzer, S.</creatorcontrib><creatorcontrib>Cagniart, C.</creatorcontrib><creatorcontrib>Ilic, S.</creatorcontrib><creatorcontrib>Konolige, K.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><creatorcontrib>Lepetit, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hinterstoisser, S.</au><au>Holzer, S.</au><au>Cagniart, C.</au><au>Ilic, S.</au><au>Konolige, K.</au><au>Navab, N.</au><au>Lepetit, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes</atitle><btitle>2011 International Conference on Computer Vision</btitle><stitle>ICCV</stitle><date>2011-11</date><risdate>2011</risdate><spage>858</spage><epage>865</epage><pages>858-865</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><isbn>9781457711015</isbn><isbn>145771101X</isbn><eisbn>1457711001</eisbn><eisbn>1457711028</eisbn><eisbn>9781457711022</eisbn><eisbn>9781457711008</eisbn><abstract>We present a method for detecting 3D objects using multi-modalities. While it is generic, we demonstrate it on the combination of an image and a dense depth map which give complementary object information. It works in real-time, under heavy clutter, does not require a time consuming training stage, and can handle untextured objects. It is based on an efficient representation of templates that capture the different modalities, and we show in many experiments on commodity hardware that our approach significantly outperforms state-of-the-art methods on single modalities.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2011.6126326</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2011 International Conference on Computer Vision, 2011, p.858-865 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_6126326 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Robustness |
title | Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T01%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multimodal%20templates%20for%20real-time%20detection%20of%20texture-less%20objects%20in%20heavily%20cluttered%20scenes&rft.btitle=2011%20International%20Conference%20on%20Computer%20Vision&rft.au=Hinterstoisser,%20S.&rft.date=2011-11&rft.spage=858&rft.epage=865&rft.pages=858-865&rft.issn=1550-5499&rft.eissn=2380-7504&rft.isbn=9781457711015&rft.isbn_list=145771101X&rft_id=info:doi/10.1109/ICCV.2011.6126326&rft_dat=%3Cieee_6IE%3E6126326%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457711001&rft.eisbn_list=1457711028&rft.eisbn_list=9781457711022&rft.eisbn_list=9781457711008&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6126326&rfr_iscdi=true |