Effective and Efficient Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems
An increasing trend in embedded system design is to integrate components with different levels of criticality into a shared hardware platform for better cost and power efficiency. Such mixed-criticality systems are subject to certifications at different levels of rigorousness, for validating the cor...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An increasing trend in embedded system design is to integrate components with different levels of criticality into a shared hardware platform for better cost and power efficiency. Such mixed-criticality systems are subject to certifications at different levels of rigorousness, for validating the correctness of different subsystems on various confidence levels. The real-time scheduling of certifiable mixed-criticality systems has been recognized to be a challenging problem, where using traditional scheduling techniques may result in unacceptable resource waste. In this paper we present an algorithm called PLRS to schedule certifiable mixed-criticality sporadic tasks systems. PLRS uses fixed-job-priority scheduling, and assigns job priorities by exploring and balancing the asymmetric effects between the workload on different criticality levels. Comparing with the state-of-the-art algorithm by Li and Baruah for such systems, which we refer to as LB, PLRS is both more effective and more efficient: (i) The schedulability test of PLRS not only theoretically dominates, but also on average significantly outperforms LB's. (ii) The run-time complexity of PLRS is polynomial (quadratic in the number of tasks), which is much more efficient than the pseudo-polynomial run-time complexity of LB. |
---|---|
ISSN: | 1052-8725 2576-3172 |
DOI: | 10.1109/RTSS.2011.10 |