Direction-oriented human motion recognition with prior estimation of directions

As the facilities are becoming available with the advent of the state-of-art technologies, the necessity of man-machine interaction systems is growing day-by-day. Within various applications of such a system, one of the most promising applications in the field of computer vision is the understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eftakhar, S. M. A., Joo Kooi Tan, Hyoungseop Kim, Ishikawa, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4231
container_issue
container_start_page 4226
container_title
container_volume
creator Eftakhar, S. M. A.
Joo Kooi Tan
Hyoungseop Kim
Ishikawa, S.
description As the facilities are becoming available with the advent of the state-of-art technologies, the necessity of man-machine interaction systems is growing day-by-day. Within various applications of such a system, one of the most promising applications in the field of computer vision is the understanding and the interpretation of human motion or behavior in a scene. Direction-oriented motion capture of a person performing some tasks is an important issue in developing a human motion recognition system, since an intelligent system should also be incorporated with the directional information. We propose a direction-oriented motion recognition approach that makes use of the directional information by prior estimation. This reduces the processing time of the system by excluding unnecessary searching for the most similar motions. In this approach, direction-wise motions are clustered within the feature space in order to make the direction estimation easier. Each motion is converted to individual template, namely Motion History Image (MHI) and Exclusive-OR (XOR) Image, by extracting distinguishable features from the video-clips containing the motions. A Structured Motion Database (SMoDB) is developed to match an unlabeled motion against the pre-stored motions. Experiments are conducted on an Avatar dataset and significant improvements in the results are noticed.
doi_str_mv 10.1109/IECON.2011.6120002
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6120002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6120002</ieee_id><sourcerecordid>6120002</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cd67ce14a2b821d9f3e85ea2c07e8fb4ab712c22968a84b908a64724aea8c743</originalsourceid><addsrcrecordid>eNo1UEtOwzAUNAIk2tILwMYXSOrn-LtEoYVKVbPpgl3lOC_UiMQoCULcnlDCan7SaDSE3AFLAZhdbdd5sU85A0gVcMYYvyBzGKkRVoO-JEurzaSVZVdkBlJmidT85YbM-_6NMSmMghkpHkOHfgixTWIXsB2woqfPxrW0ib8uHdP42oYz_wrDiX50IXYU-yE07uzGmlb_Jf0tua7de4_LCRfksFkf8udkVzxt84ddEkDLIfGV0h5BOF4aDpWtMzQSHfdMo6lL4UoN3HNulXFGlJYZp4TmwqEzXotsQe7_agMiHsdJjeu-j9MX2Q99-1KM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Direction-oriented human motion recognition with prior estimation of directions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eftakhar, S. M. A. ; Joo Kooi Tan ; Hyoungseop Kim ; Ishikawa, S.</creator><creatorcontrib>Eftakhar, S. M. A. ; Joo Kooi Tan ; Hyoungseop Kim ; Ishikawa, S.</creatorcontrib><description>As the facilities are becoming available with the advent of the state-of-art technologies, the necessity of man-machine interaction systems is growing day-by-day. Within various applications of such a system, one of the most promising applications in the field of computer vision is the understanding and the interpretation of human motion or behavior in a scene. Direction-oriented motion capture of a person performing some tasks is an important issue in developing a human motion recognition system, since an intelligent system should also be incorporated with the directional information. We propose a direction-oriented motion recognition approach that makes use of the directional information by prior estimation. This reduces the processing time of the system by excluding unnecessary searching for the most similar motions. In this approach, direction-wise motions are clustered within the feature space in order to make the direction estimation easier. Each motion is converted to individual template, namely Motion History Image (MHI) and Exclusive-OR (XOR) Image, by extracting distinguishable features from the video-clips containing the motions. A Structured Motion Database (SMoDB) is developed to match an unlabeled motion against the pre-stored motions. Experiments are conducted on an Avatar dataset and significant improvements in the results are noticed.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781612849690</identifier><identifier>ISBN: 1612849695</identifier><identifier>EISBN: 1612849717</identifier><identifier>EISBN: 9781612849713</identifier><identifier>EISBN: 9781612849720</identifier><identifier>EISBN: 1612849725</identifier><identifier>DOI: 10.1109/IECON.2011.6120002</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Estimation ; Hidden Markov models ; History ; Humans ; Training</subject><ispartof>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, p.4226-4231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6120002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6120002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eftakhar, S. M. A.</creatorcontrib><creatorcontrib>Joo Kooi Tan</creatorcontrib><creatorcontrib>Hyoungseop Kim</creatorcontrib><creatorcontrib>Ishikawa, S.</creatorcontrib><title>Direction-oriented human motion recognition with prior estimation of directions</title><title>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>As the facilities are becoming available with the advent of the state-of-art technologies, the necessity of man-machine interaction systems is growing day-by-day. Within various applications of such a system, one of the most promising applications in the field of computer vision is the understanding and the interpretation of human motion or behavior in a scene. Direction-oriented motion capture of a person performing some tasks is an important issue in developing a human motion recognition system, since an intelligent system should also be incorporated with the directional information. We propose a direction-oriented motion recognition approach that makes use of the directional information by prior estimation. This reduces the processing time of the system by excluding unnecessary searching for the most similar motions. In this approach, direction-wise motions are clustered within the feature space in order to make the direction estimation easier. Each motion is converted to individual template, namely Motion History Image (MHI) and Exclusive-OR (XOR) Image, by extracting distinguishable features from the video-clips containing the motions. A Structured Motion Database (SMoDB) is developed to match an unlabeled motion against the pre-stored motions. Experiments are conducted on an Avatar dataset and significant improvements in the results are noticed.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Hidden Markov models</subject><subject>History</subject><subject>Humans</subject><subject>Training</subject><issn>1553-572X</issn><isbn>9781612849690</isbn><isbn>1612849695</isbn><isbn>1612849717</isbn><isbn>9781612849713</isbn><isbn>9781612849720</isbn><isbn>1612849725</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UEtOwzAUNAIk2tILwMYXSOrn-LtEoYVKVbPpgl3lOC_UiMQoCULcnlDCan7SaDSE3AFLAZhdbdd5sU85A0gVcMYYvyBzGKkRVoO-JEurzaSVZVdkBlJmidT85YbM-_6NMSmMghkpHkOHfgixTWIXsB2woqfPxrW0ib8uHdP42oYz_wrDiX50IXYU-yE07uzGmlb_Jf0tua7de4_LCRfksFkf8udkVzxt84ddEkDLIfGV0h5BOF4aDpWtMzQSHfdMo6lL4UoN3HNulXFGlJYZp4TmwqEzXotsQe7_agMiHsdJjeu-j9MX2Q99-1KM</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Eftakhar, S. M. A.</creator><creator>Joo Kooi Tan</creator><creator>Hyoungseop Kim</creator><creator>Ishikawa, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>Direction-oriented human motion recognition with prior estimation of directions</title><author>Eftakhar, S. M. A. ; Joo Kooi Tan ; Hyoungseop Kim ; Ishikawa, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cd67ce14a2b821d9f3e85ea2c07e8fb4ab712c22968a84b908a64724aea8c743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Hidden Markov models</topic><topic>History</topic><topic>Humans</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Eftakhar, S. M. A.</creatorcontrib><creatorcontrib>Joo Kooi Tan</creatorcontrib><creatorcontrib>Hyoungseop Kim</creatorcontrib><creatorcontrib>Ishikawa, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eftakhar, S. M. A.</au><au>Joo Kooi Tan</au><au>Hyoungseop Kim</au><au>Ishikawa, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Direction-oriented human motion recognition with prior estimation of directions</atitle><btitle>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2011-11</date><risdate>2011</risdate><spage>4226</spage><epage>4231</epage><pages>4226-4231</pages><issn>1553-572X</issn><isbn>9781612849690</isbn><isbn>1612849695</isbn><eisbn>1612849717</eisbn><eisbn>9781612849713</eisbn><eisbn>9781612849720</eisbn><eisbn>1612849725</eisbn><abstract>As the facilities are becoming available with the advent of the state-of-art technologies, the necessity of man-machine interaction systems is growing day-by-day. Within various applications of such a system, one of the most promising applications in the field of computer vision is the understanding and the interpretation of human motion or behavior in a scene. Direction-oriented motion capture of a person performing some tasks is an important issue in developing a human motion recognition system, since an intelligent system should also be incorporated with the directional information. We propose a direction-oriented motion recognition approach that makes use of the directional information by prior estimation. This reduces the processing time of the system by excluding unnecessary searching for the most similar motions. In this approach, direction-wise motions are clustered within the feature space in order to make the direction estimation easier. Each motion is converted to individual template, namely Motion History Image (MHI) and Exclusive-OR (XOR) Image, by extracting distinguishable features from the video-clips containing the motions. A Structured Motion Database (SMoDB) is developed to match an unlabeled motion against the pre-stored motions. Experiments are conducted on an Avatar dataset and significant improvements in the results are noticed.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2011.6120002</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, p.4226-4231
issn 1553-572X
language eng
recordid cdi_ieee_primary_6120002
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Estimation
Hidden Markov models
History
Humans
Training
title Direction-oriented human motion recognition with prior estimation of directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Direction-oriented%20human%20motion%20recognition%20with%20prior%20estimation%20of%20directions&rft.btitle=IECON%202011%20-%2037th%20Annual%20Conference%20of%20the%20IEEE%20Industrial%20Electronics%20Society&rft.au=Eftakhar,%20S.%20M.%20A.&rft.date=2011-11&rft.spage=4226&rft.epage=4231&rft.pages=4226-4231&rft.issn=1553-572X&rft.isbn=9781612849690&rft.isbn_list=1612849695&rft_id=info:doi/10.1109/IECON.2011.6120002&rft_dat=%3Cieee_6IE%3E6120002%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612849717&rft.eisbn_list=9781612849713&rft.eisbn_list=9781612849720&rft.eisbn_list=1612849725&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6120002&rfr_iscdi=true