SPICE steady state modelling of thermoelectric generators involving the Thomson effect
During operation thermoelectric generators (TEGs) are subject to the following thermal effects; Heat conduction according to Fourier's law, Joule heating, Peltier heating and Thomson heating. Many SPICE-based models exist for TEGs however in the vast majority of them the Thomson effect is negle...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1589 |
---|---|
container_issue | |
container_start_page | 1584 |
container_title | |
container_volume | |
creator | Laird, I. Lu, D. D. C. |
description | During operation thermoelectric generators (TEGs) are subject to the following thermal effects; Heat conduction according to Fourier's law, Joule heating, Peltier heating and Thomson heating. Many SPICE-based models exist for TEGs however in the vast majority of them the Thomson effect is neglected due to its relatively small size compared to the other effects, as well as the complexity that results from including the Thomson effect in the model. This paper seeks to present a model that governs the steady state performance of a TEG that includes the Thomson effect whilst limiting the complexity of the SPICE model. |
doi_str_mv | 10.1109/IECON.2011.6119543 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6119543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6119543</ieee_id><sourcerecordid>6119543</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-60cd8f06fb2616c4f7094674dbd402a4c2a7143ec031102bfaef56304a2eba9d3</originalsourceid><addsrcrecordid>eNotkNFKwzAYhSMquM29gN7kBVrzJ2nSXEqpWhhOcIp3I23_bJW2kbQM9vZW7NXHgY8D5xByBywGYOahyLPta8wZQKwATCLFBVmCAp5Ko0FfkrXR6ZyVYVdkAUkiokTzrxuyHIZvxhKZKliQz_e3IsvpMKKtzxPsiLTzNbZt0x-od3Q8Yug8tliNoanoAXsMdvRhoE1_8u3pT5scujv6bvA9Recm9ZZcO9sOuJ65Ih9P-S57iTbb5yJ73EQNBzNGilV16phyJVegKuk0M1JpWZe1ZNzKilsNUmDFxLSbl86iS5Rg0nIsranFitz_9zaIuP8JTWfDeT9_In4Bx0ZUkw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SPICE steady state modelling of thermoelectric generators involving the Thomson effect</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Laird, I. ; Lu, D. D. C.</creator><creatorcontrib>Laird, I. ; Lu, D. D. C.</creatorcontrib><description>During operation thermoelectric generators (TEGs) are subject to the following thermal effects; Heat conduction according to Fourier's law, Joule heating, Peltier heating and Thomson heating. Many SPICE-based models exist for TEGs however in the vast majority of them the Thomson effect is neglected due to its relatively small size compared to the other effects, as well as the complexity that results from including the Thomson effect in the model. This paper seeks to present a model that governs the steady state performance of a TEG that includes the Thomson effect whilst limiting the complexity of the SPICE model.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781612849690</identifier><identifier>ISBN: 1612849695</identifier><identifier>EISBN: 1612849717</identifier><identifier>EISBN: 9781612849713</identifier><identifier>EISBN: 9781612849720</identifier><identifier>EISBN: 1612849725</identifier><identifier>DOI: 10.1109/IECON.2011.6119543</identifier><language>eng</language><publisher>IEEE</publisher><subject>A = Thermoelement cross-sectional area (m ; c = Specific heat (J/kg·K) ; Cold junction heat rejection rate (W) ; Cold junction temperature (K) ; Electrical load (Ω) ; Equations ; Generation rate of internal heat sources (W) ; Hot junction heat absorption rate (W) ; Hot junction temperature (K) ; I = Electrical current (A) ; Integrated circuit modeling ; Joule heat generation rate (W) ; Junctions ; k = Thermal conductivity (W/m·K) ; L = Thermoelement length (m) ; Mass density (kg/m ; Mathematical model ; Output electrical power (W) ; Peltier heat generation rate (W) ; QQ̇ ; R = Thermoelement electrical resistance (Ω) ; Resistance heating ; SPICE ; T = Absolute temperature (K) ; t = Time (s) ; Thermal conduction heat flow (W) ; Thomson heat generation rate (W) ; V = Thermocouple voltage (V) ; x = Thermoelement axial position from the hot junction (m) ; α = Seebeck coefficient (V/K) ; β = Thomson coefficient (V/K) ; ρ = Electrical resistivity (Ω·m)</subject><ispartof>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, p.1584-1589</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6119543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6119543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laird, I.</creatorcontrib><creatorcontrib>Lu, D. D. C.</creatorcontrib><title>SPICE steady state modelling of thermoelectric generators involving the Thomson effect</title><title>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>During operation thermoelectric generators (TEGs) are subject to the following thermal effects; Heat conduction according to Fourier's law, Joule heating, Peltier heating and Thomson heating. Many SPICE-based models exist for TEGs however in the vast majority of them the Thomson effect is neglected due to its relatively small size compared to the other effects, as well as the complexity that results from including the Thomson effect in the model. This paper seeks to present a model that governs the steady state performance of a TEG that includes the Thomson effect whilst limiting the complexity of the SPICE model.</description><subject>A = Thermoelement cross-sectional area (m</subject><subject>c = Specific heat (J/kg·K)</subject><subject>Cold junction heat rejection rate (W)</subject><subject>Cold junction temperature (K)</subject><subject>Electrical load (Ω)</subject><subject>Equations</subject><subject>Generation rate of internal heat sources (W)</subject><subject>Hot junction heat absorption rate (W)</subject><subject>Hot junction temperature (K)</subject><subject>I = Electrical current (A)</subject><subject>Integrated circuit modeling</subject><subject>Joule heat generation rate (W)</subject><subject>Junctions</subject><subject>k = Thermal conductivity (W/m·K)</subject><subject>L = Thermoelement length (m)</subject><subject>Mass density (kg/m</subject><subject>Mathematical model</subject><subject>Output electrical power (W)</subject><subject>Peltier heat generation rate (W)</subject><subject>QQ̇</subject><subject>R = Thermoelement electrical resistance (Ω)</subject><subject>Resistance heating</subject><subject>SPICE</subject><subject>T = Absolute temperature (K)</subject><subject>t = Time (s)</subject><subject>Thermal conduction heat flow (W)</subject><subject>Thomson heat generation rate (W)</subject><subject>V = Thermocouple voltage (V)</subject><subject>x = Thermoelement axial position from the hot junction (m)</subject><subject>α = Seebeck coefficient (V/K)</subject><subject>β = Thomson coefficient (V/K)</subject><subject>ρ = Electrical resistivity (Ω·m)</subject><issn>1553-572X</issn><isbn>9781612849690</isbn><isbn>1612849695</isbn><isbn>1612849717</isbn><isbn>9781612849713</isbn><isbn>9781612849720</isbn><isbn>1612849725</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNFKwzAYhSMquM29gN7kBVrzJ2nSXEqpWhhOcIp3I23_bJW2kbQM9vZW7NXHgY8D5xByBywGYOahyLPta8wZQKwATCLFBVmCAp5Ko0FfkrXR6ZyVYVdkAUkiokTzrxuyHIZvxhKZKliQz_e3IsvpMKKtzxPsiLTzNbZt0x-od3Q8Yug8tliNoanoAXsMdvRhoE1_8u3pT5scujv6bvA9Recm9ZZcO9sOuJ65Ih9P-S57iTbb5yJ73EQNBzNGilV16phyJVegKuk0M1JpWZe1ZNzKilsNUmDFxLSbl86iS5Rg0nIsranFitz_9zaIuP8JTWfDeT9_In4Bx0ZUkw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Laird, I.</creator><creator>Lu, D. D. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>SPICE steady state modelling of thermoelectric generators involving the Thomson effect</title><author>Laird, I. ; Lu, D. D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-60cd8f06fb2616c4f7094674dbd402a4c2a7143ec031102bfaef56304a2eba9d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A = Thermoelement cross-sectional area (m</topic><topic>c = Specific heat (J/kg·K)</topic><topic>Cold junction heat rejection rate (W)</topic><topic>Cold junction temperature (K)</topic><topic>Electrical load (Ω)</topic><topic>Equations</topic><topic>Generation rate of internal heat sources (W)</topic><topic>Hot junction heat absorption rate (W)</topic><topic>Hot junction temperature (K)</topic><topic>I = Electrical current (A)</topic><topic>Integrated circuit modeling</topic><topic>Joule heat generation rate (W)</topic><topic>Junctions</topic><topic>k = Thermal conductivity (W/m·K)</topic><topic>L = Thermoelement length (m)</topic><topic>Mass density (kg/m</topic><topic>Mathematical model</topic><topic>Output electrical power (W)</topic><topic>Peltier heat generation rate (W)</topic><topic>QQ̇</topic><topic>R = Thermoelement electrical resistance (Ω)</topic><topic>Resistance heating</topic><topic>SPICE</topic><topic>T = Absolute temperature (K)</topic><topic>t = Time (s)</topic><topic>Thermal conduction heat flow (W)</topic><topic>Thomson heat generation rate (W)</topic><topic>V = Thermocouple voltage (V)</topic><topic>x = Thermoelement axial position from the hot junction (m)</topic><topic>α = Seebeck coefficient (V/K)</topic><topic>β = Thomson coefficient (V/K)</topic><topic>ρ = Electrical resistivity (Ω·m)</topic><toplevel>online_resources</toplevel><creatorcontrib>Laird, I.</creatorcontrib><creatorcontrib>Lu, D. D. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laird, I.</au><au>Lu, D. D. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SPICE steady state modelling of thermoelectric generators involving the Thomson effect</atitle><btitle>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>1584</spage><epage>1589</epage><pages>1584-1589</pages><issn>1553-572X</issn><isbn>9781612849690</isbn><isbn>1612849695</isbn><eisbn>1612849717</eisbn><eisbn>9781612849713</eisbn><eisbn>9781612849720</eisbn><eisbn>1612849725</eisbn><abstract>During operation thermoelectric generators (TEGs) are subject to the following thermal effects; Heat conduction according to Fourier's law, Joule heating, Peltier heating and Thomson heating. Many SPICE-based models exist for TEGs however in the vast majority of them the Thomson effect is neglected due to its relatively small size compared to the other effects, as well as the complexity that results from including the Thomson effect in the model. This paper seeks to present a model that governs the steady state performance of a TEG that includes the Thomson effect whilst limiting the complexity of the SPICE model.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2011.6119543</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1553-572X |
ispartof | IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, p.1584-1589 |
issn | 1553-572X |
language | eng |
recordid | cdi_ieee_primary_6119543 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | A = Thermoelement cross-sectional area (m c = Specific heat (J/kg·K) Cold junction heat rejection rate (W) Cold junction temperature (K) Electrical load (Ω) Equations Generation rate of internal heat sources (W) Hot junction heat absorption rate (W) Hot junction temperature (K) I = Electrical current (A) Integrated circuit modeling Joule heat generation rate (W) Junctions k = Thermal conductivity (W/m·K) L = Thermoelement length (m) Mass density (kg/m Mathematical model Output electrical power (W) Peltier heat generation rate (W) QQ̇ R = Thermoelement electrical resistance (Ω) Resistance heating SPICE T = Absolute temperature (K) t = Time (s) Thermal conduction heat flow (W) Thomson heat generation rate (W) V = Thermocouple voltage (V) x = Thermoelement axial position from the hot junction (m) α = Seebeck coefficient (V/K) β = Thomson coefficient (V/K) ρ = Electrical resistivity (Ω·m) |
title | SPICE steady state modelling of thermoelectric generators involving the Thomson effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SPICE%20steady%20state%20modelling%20of%20thermoelectric%20generators%20involving%20the%20Thomson%20effect&rft.btitle=IECON%202011%20-%2037th%20Annual%20Conference%20of%20the%20IEEE%20Industrial%20Electronics%20Society&rft.au=Laird,%20I.&rft.date=2011-01-01&rft.spage=1584&rft.epage=1589&rft.pages=1584-1589&rft.issn=1553-572X&rft.isbn=9781612849690&rft.isbn_list=1612849695&rft_id=info:doi/10.1109/IECON.2011.6119543&rft_dat=%3Cieee_6IE%3E6119543%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612849717&rft.eisbn_list=9781612849713&rft.eisbn_list=9781612849720&rft.eisbn_list=1612849725&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6119543&rfr_iscdi=true |